
To appear in EPTCS.
© G. Campbell
This work is licensed under the
Creative Commons Attribution License.

Parallel Hyperedge Replacement String Languages

Graham Campbell*
School of Mathematics, Statistics and Physics, Newcastle University

Newcastle upon Tyne, United Kingdom
g.j.campbell2@newcastle.ac.uk

There are many open questions surrounding the characterisation of groups with context-sensitive
word problem. Only in 2018 was it shown that all finitely generated virtually Abelian groups have
multiple context-free word problems, and it is a long-standing open question as to where to place the
word problems of hyperbolic groups in the formal language hierarchy. In this paper, we introduce a
new language class called the parallel hyperedge replacement string languages, show that it contains
all multiple context-free and ET0L languages, and lay down the foundations for future work that may
be able to place the word problems of many hyperbolic groups in this class.

1 Introduction

In general, the word problem is the question that asks if two strings (words) represent the same element
in some structure. In the case of groups, this is the equivalent to asking if a given string represents the
identity element, since if u, v are strings, then they are equal in a group if and only if uv−1 represents the
identity in the group. Thus, given a presentation 〈X | R〉 for a group G, the word problem is equivalent
to the membership problem for the string language WPX(G) = {w ∈ (X ∪X−1)∗ | w =G 1G}. Viewing
things geometrically, the word problem of a group can be identified with the set of loops based at the
identity in the Cayley graph. A partial sketch of Cayley graphs of Z2 and F2 is provided in Figure 1.

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

(a) Cayley graph of Z2

a

b

a

b

a
b

b

ab

b

aba

a

b

a

a
b

b

a b

b

a ba

a

b

a

a
b

a ab

b

aba

ba

b

a

b

a a

b

b

a

b

a

b

a b

(b) Cayley graph of F2

Figure 1: Example Cayley graphs

*Supported by a Doctoral Training Grant from the Engineering and Physical Sciences Research Council (EPSRC) Grant
No. (2281162) in the UK.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Parallel Hyperedge Replacement String Languages

A natural question to ask is how hard the word problem is, in general, and for specific families
of groups. Unsurprisingly, both the universal word problem and the word problem are undecidable in
general, even for finite presentations [25]. It is well known that a presentation defines a finite group if
and only if it admits a regular word problem [3], and defines a finitely generated virtually free group
if and only if it admits a deterministic context-free word problem if and only if it admits a context-free
word problem [22]. The multiple context-free (MCF) languages sit strictly in between the context-free
and context-sensitive languages [29]. In 2015, a major breakthrough of Salvati was published, showing
that the word problem of Z2 is an MCF language [28], and in 2018, Ho extended this result to all finitely
generated virtually Abelian groups [16]. This is interesting since the MCF languages are exactly the
string languages generated by hyperedge replacement grammars [10, 31]. It remains an open problem
as to which other families of groups admit MCF word problems, however, we do at least know that the
fundamental group of a hyperbolic three-manifold does not admit an MCF word problem [11].

There are of course, lots of other well-behaved language classes sitting in between the context-free
and context-sensitive classes, such as the indexed languages [1] or the subclass of ET0L languages [27].
It is not known if there are any groups with indexed word problems, other than the virtually free groups,
but it is known that a particular subclass of the indexed languages, not contained in ET0L, only contains
word problems of virtually free groups [12]. We also do not know if any hyperbolic groups have ET0L
word problems [6] (other than the virtually free groups), such as the fundamental group of the double
torus. It is conjectured that every ET0L group language is admitted by a virtually free group [6]. Figure
2 shows the (group) language hierarchy, where necessarily strict inclusion uses a solid line, and GP
denotes the class of all group languages (the class of word problems of all finitely generated groups).

CS

INDEX
MCF

ET OL

CF

DCF

REG

(a) String language hierarchy

CS ∩GP

INDEX ∩GP
MCF ∩GP

ET OL∩GP

DCF ∩GP = CF ∩GP

REG ∩GP

(b) Group language hierarchy

Figure 2: Previously known formal language hierarchies

In this paper, we define and study a new string language class, combining ideas from both ET0L
and hyperedge replacement grammars. We call our new class the parallel hyperedge replacement string
(PHRS) languages, and show that the class strictly contains both the classes of MCF and ET0L lan-
guages, that it is a substitution and iterated substitution closed full abstract family of languages, and that
PHRS group languages are closed under free product. While parallel hyperedge replacement has been
considered before, most notably by Habel and Kreowski (separately) [13, 18, 19], the work is not exten-
sive and does not consider repetition-freeness, rational control, or string generational power. Our long
term goal is to place the word problem for as many hyperbolic groups as possible in the PHRS class.
Knowledge of (geometric) group theory and word problems is not required to read and understand this
paper - it is purely motivational!

G. Campbell 3

Figure 3 summarises how the PHRS and repetition-free PHRS languages fit into the string language
hierarchy and also how we conjecture the hierarchy collapses when we restrict to group languages.

REC

CS

PHRS

PHRS rf INDEX

MCF ET OL

CF

DCF

REG

(a) Proved string language hierarchy

REC ∩GP

CS ∩GP

PHRS rf∩GP ?
= PHRS ∩GP

MCF ∩GP

DCF ∩GP 3
= CF ∩GP

?
= ET OL∩GP ?

= INDEX ∩GP

REG ∩GP

(b) Conjectured group language hierarchy

Figure 3: New formal language hierarchies

2 Preliminaries

By N we mean the natural numbers including zero, by n we mean {1, . . . ,n}, and ⊕ denotes relational
override. In this paper, all alphabets and sequences will be finite. Formally, a sequence on a set S is a
function σ : n→ S. We view strings as sequences on an alphabet and denote the set of all sequences on S
by S∗. By a coding we mean a letter-to-letter homomorphism of free monoids, and by a weak encoding
we mean a coding which possibly sends letters to the empty string. In this section, we define hyperedge
replacement and ET0L grammars, and recall some important known results.

2.1 Hyperedge Replacement

This subsection is mostly based on [13, 8]. By a signature we mean a pair C = (Σ, type) where Σ is some
alphabet, called the label set, and type : Σ→ N is a typing function which assigns to each label an arity
called its type. We usually will assume some arbitrary but fixed signature C = (Σ, type).

A hypergraph is a tuple H = (VH ,EH ,attH , labH ,extH) where VH is a finite set of nodes, EH is a finite
set of hyperedges, attH : EH→V ∗H is the attachment function, labH : EH→ Σ is the labelling function, and
extH ∈V ∗H are the external nodes, such that labelling is compatible with typing (type◦ labH = |·| ◦ attH).
In an abuse of notation, we write type(H) = |extH | for the type of H, and define typeH : EH → N by
typeH = type ◦ labH for the type of a hyperedge. For any hyperedge e ∈ EH , whenever m = typeH(e)
we call e a type m hyperedge, and call e proper whenever attH(e) is injective (contains no repeated
nodes). Call H proper if every e ∈ EH is proper and repetition-free if extH is injective. The class of
all hypergraphs (repetition-free hypergraphs) over C is denoted HC (Hrf

C). We say two hypergraphs
G,H ∈HC are isomorphic (G∼= H) if there is a pair of bijective functions (gV : VG→VH ,gE : EG→ EH)
such that attH ◦gE = g∗V ◦ attG, labH ◦gE = labG, and gV ◦ extG = extH .

4 Parallel Hyperedge Replacement String Languages

Given a string w ∈ Σ∗ of length n, its string graph is w• = ({v0, . . . ,vn},{e1, . . . ,en}),att, lab,v0vn)
where att(ei) = vi−1vi and lab(ei) = w(i) for all i ∈ n (Figure 4(a)). If H ∼= w• for some w ∈ Σ∗, we
call H a string graph representing w. We also use the superscript bullet to denote the handle of a label.
If X ∈ Σ is of type n, then the handle of X is the hypergraph X• = ({v1, . . . ,vn},{e}, att, lab,v1 · · ·vn)
where att(e) = v1 · · ·vn and lab(e) = X (Figure 4(b)). These two definitions coincide for a type 2 label,
considered either as a string of length 1 or as a label, so there can be no confusion.

1
w(1) w(2) · · · w(n)

2

1 2 1 2 1 2

(a) String graph w•

X
1 2

3· · ·n

1 2

3n

(b) Handle hypergraph X•

Figure 4: Example hypergraphs

Let H ∈HC be a hypergraph and B⊆ EH be a selection of hyperedges. Then σ : B→HC is called a
replacement function if type◦σ = typeH |B. The replacement of B in H using σ is denoted by H[σ], and
is the hypergraph obtained from H by removing B from EH , disjointly adding the nodes and hyperedges
of σ(e), for each e ∈ B, and identifying the i-th external node of σ(e) with the i-th attachment node
of e, for each e ∈ B and i ∈ typeH(e). The external nodes of H[σ] remain exactly those of H and
all hyperedges keep their original attachments and labels. H[σ] exists exactly when σ : B→HC is a
replacement function, and is unique up to isomorphism. If B = {e1, . . . ,en} and Ri = σ(ei) for all i ∈ n,
then we write H[e1/R1, . . . ,en/Rn] in place of H[σ]. Figure 5 shows an example replacement.

v1

1

v2

e1

X
v3

e2

Y
v4

2
e3

Y

1

2

3 1 2

1
2

(a) Hypergraph H

v1

1

v2

e1

X
v3

2

1

2

3

(b) Hypergraph R

v1

1

v2

e1

X
v3

e4

X
v4

v5

2
e3

Y

1

2

3
1

2

3

1
2

(c) Hypergraph H[e2/R]

Figure 5: Example hyperedge replacement

Let N ⊆ Σ be a set of non-terminals. A type n rule over N is a pair (L,R) with L ∈ N, R ∈ HC , and
type(L) = type(R) = n. Call a rule (L,R) repetition-free (proper) if R is repetition-free (proper). Given
a hypergraph H ∈ HC and a set of rules R, if e ∈ EH and (labH(e),R) ∈ R, then we say that H directly
derives H ′ ∼= H[e/R], and write H⇒R H ′. For a given hyperedge e and choice of rule, H ′ is unique up to
isomorphism. Clearly⇒R is a binary relation on HC . We say H ∈ HC derives H ′ if there is a sequence
H ⇒R H1⇒R · · · ⇒R Hk = H ′ for some k ≥ 1 or H ∼= H ′. We write H ⇒k

R H ′ or H ⇒∗R H ′. Clearly,
(direct) derivations cannot delete nodes, and (direct) derivations made using repetition-free rules cannot
merge nodes. We have the following result for repetition-free rules:

Theorem 2.1 (HR Context-Freeness [13]). LetR be a set of repetition-free rules over N, H ∈HC , X ∈N,
and k ∈ N. Then there is a derivation X•⇒k+1 H if and only if there is a rule (X ,R) ∈R and a mapping
σ : lab−1

R (N)→HC such that H = R[σ], ∀e ∈ lab−1
R (N), labR(e)•⇒k(e) σ(e), and ∑e∈lab−1

R (N) k(e) = k.

G. Campbell 5

A hyperedge replacement grammar of order k (k-HR grammar) is a tuple G = (C,N,S,R) where
C = (Σ, type) is a signature, N ⊆ Σ is the set of non-terminal labels, S ∈ N is the start symbol, and R
is a finite set of rules over N, with max({type(r) | r ∈ R}) ≤ k. We call Σ \N the terminal labels and
call G repetition-free (proper) if all its rules are repetition-free (proper). The language generated by G is
L(G) = {H ∈ HC | S•⇒∗R H with lab−1

H (N) = /0} ⊆ HC . L ⊆HC is called a (repetition-free) hyperedge
replacement language of order k ((repetition-free) k-HR language) if there is a (repetition-free) k-HR
grammar such that L(G) = L. The class of (repetition-free) HR languages is the union of all (repetition-
free) k-HR languages for k ≥ 0. Denote these HRk and HR (HRrf

k and HRrf). All such languages are
isomorphism-closed and homogeneous (all hypergraphs have the same type).

Theorem 2.2 (Repetition-Free HR Generational Power [10]). Given an HR grammar G over C, one can
effectively construct a repetition-free HR grammar G′ with L(G′) = L(G)∩Hrf

C .

Theorem 2.3 (HR Linear-Growth [13]). Given an infinite HR language L, there exists an infinite se-
quence of hypergraphs in L, say H0,H1,H2, . . . and constants c,d ∈ N with c+ d ≥ 1, such that for all
i ∈ N, |VHi+1 |= |VHi |+ c and |EHi+1 |= |EHi |+d.

The partial function STR :HC ⇀ Σ∗ sends string graphs to the strings they represent, and is undefined
elsewhere. A language L ⊆ HC is said to be a string graph language if it only contains string graphs.
Given an HR grammar G that generates a string graph language, we write STR(L(G)) for the actual string
language it generates. A string language L⊆ A∗ is called a (repetition-free) hyperedge replacement string
language of order k ((repetition-free) k-HRS language) if there is a (repetition-free) k-HR grammar G
such that G generates a string graph language and STR(L(G)) = L \ {ε}. The class of (repetition-free)
HRS languages is the union of all (repetition-free) k-HRS languages for k ≥ 2.

Theorem 2.4 (HR String Generative Power). The following classes are equivalent, for any k ≥ 1:

1. HRS2k = HRS2k+1 = HRS rf
2k = HRS rf

2k+1: string languages of (repetition-free) hyperedge re-
placement grammars of order 2k or 2k+1;

2. OUT(DT WTk): output languages of deterministic tree walking transducers of crossing number at
most k (see [2]);

3. LCFRk: string languages of linear context-free rewriting systems of rank at most k (see [30]);

4. MCFk: languages of k-multiple context-free grammars (see [29]);

5. RT SAk: languages of k-restricted tree stack automata (see [7]).

Proof. HRSk =HRS rf
k for all k≥ 2 is due to Theorem 2.2 andHRS rf

2k+1 ⊆OUT(DT WTk)⊆HRS2k
for all k ≥ 1 is due to Engelfriet et al. [10], which gives us the equalities in (1) and (1) = (2). (2) = (3)
is due to Weir [31], (3) = (4) is due to Seki et al. (1991) [29], and (4) = (5) is due to Denkinger [7].

Call a set S ⊆ Nd linear if it is of the form {p+ a1 p1 + · · ·an pn | a1, . . .an ∈ N} for some fixed
p, p1, . . . pn ∈ Nd . Call S semilinear if it is a finite union of linear sets. Given A = {a1, . . . ,ad} and
w ∈ A∗, define ψA(w) = (|w|a1 , . . . , |w|ad) where |w|ai counts the number of occurrences of ai in w. A
string language L is called semilinear if ψA(L) is semilinear. Two string languages L1,L2 ⊆ A∗ are called
letter-equivalent if ψA(L1) = ψA(L2). In 1966, Parikh showed that a language is semilinear if and only
if it is letter-equivalent to a regular language and that all context-free langauges are semilinear [26]. In
1991, Seki et al. showed that all MCF languages are also semilinear and that the classes of k-MCF
languages are substitution closed full AFLs [29]. This gives us the following result:

Theorem 2.5 (HRS Closure Properties). For all k≥ 2,HRSk is a substitution closed full AFL containing
only semilinear languages.

6 Parallel Hyperedge Replacement String Languages

2.2 ET0L Languages

Lindenmayer systems (L systems) were introduced in 1968 by Aristid Lindenmayer. We direct the reader
to [27] for a comprehensive introduction to the topic. In this paper, we are interested in the class of string
languages called the ET0L languages, described by a specific type of L system.

A table over Σ is a left-total finite binary relation T ⊆ Σ×Σ∗, and can be associated to a substi-
tution σT such that for any L ⊆ Σ∗, we define σT (L) =

⋃
w∈L σT (w) and σT (a1 . . .an) = {w1 . . .wn |

(a1,w1), . . . ,(an,wn) ∈ T}. An ET0L grammar is a tuple G = (Σ,A,S,T) where Σ is an alphabet, A⊆ Σ

is the terminal alphabet, S ∈ Σ is the start symbol and T is a finite set of tables over Σ. The language
generated by G is L(G) =

⋃
n∈N{σT1 · · ·σTn(S) | T1, . . . ,Tn ∈ T }∩A∗. A language L ⊆ A∗ is called an

ET0L language if there exists an ET0L grammar G such that L(G) = L. It will be convenient to think of
table entries as rules and substitutions as parallel replacement. We will make this formal Subsection 3.1.

Finally, call an ET0L grammar propagating if each table is contained in Σ× Σ+ (rather than just
Σ×Σ∗). That is, rules have non-empty right-hand sides. The following results are useful to us:

Theorem 2.6 (Propagating ET0L Generative Power [27]). Given an ET0L grammar G, one can effec-
tively construct a propagating ET0L grammar G′ such that L(G)\{ε}= L(G′).

Theorem 2.7 (ET0L Closure Properties [27]). ET OL is a substitution closed full AFL.

Theorem 2.8 (MCF and ET0L Incomparable).

1. K = {wh(w) |w∈D} is a 2-MCF language which is not ET0L, where D⊆ Σ∗ is the Dyck language
[9], Σ is a disjoint copy of Σ, and h : Σ∗→ Σ∗ is defined by sending each a ∈ Σ to its copy a ∈ Σ.

2. L = {a2n | n ∈ N} is an ET0L language but not MCF. Moreover, L is not semilinear.

Proof. The first part follows from Theorem 8 of [24]. For the second part, it is easy to see that G =
({a},{a},a,{{(a,aa)}}) is an ET0L grammar with L(G) = L. Recall from Subsection 2.1 that a lan-
guage is semilinear if and only if it is letter-equivalent to a regular language. Since L is a language on
only one symbol, it must be semilinear if and only if it is a regular language, but clearly, it is not a regular
language. But all MCF languages are semilinear, so it must be the case that L is not MCF.

3 New Results

3.1 Parallel Hyperedge Replacement

We start by introducing parallel derivations and parallel hyperedge replacement grammars and languages,
equivalent to those defined by Habel in Chapter VIII.3 of [13]. The most fundamental notion to us is that
of a parallel direct derivation, where every hyperedge is necessarily replaced.

In order to ensure progress can always be made, we are only interested in sets of rules that are tables:

Definition 3.1 (Table). Given C = (Σ, type), a table T over Σ is a finite set of rules over Σ such that for
each L ∈ Σ there is at least one R ∈HC with (L,R) ∈ T . Call T repetition-free (proper) if all its rules are
repetition-free (proper).

Definition 3.2 (Parallel Direct Derivation). Given C = (Σ, type), H ∈ HC with EH = {e1, . . .en}, and T
a table over Σ, if for each ei ∈ EH , there is a Ri ∈ HC such that (labH(ei),Ri) ∈ T , then we say that H
parallelly directly derives H ′ ∼= H[e1/R1, . . . ,en/Rn], and write HVT H ′.

G. Campbell 7

Definition 3.3 (Parallel Derivation). Given C = (Σ, type), H,H ′ ∈ HC , and a finite set of tables T =
{Ti | i ∈ I} over Σ indexed by I, we say H parallelly derives H ′ if there is a sequence of parallel direct
derivations HVTi1

H1VTi2
· · ·VTik

Hk =H ′ or H ∼=H ′. We write HVi1i2···ik
T H ′, HVk

T H ′, or HV∗T H ′.
Call i1i2 · · · ik ∈ I∗ the trace of the derivation, defined to be ε when H ∼= H ′.

Rather than replacing only non-terminals, as is usual in hyperedge replacement grammars, we allow
all hyperedges to be replaced, and have a special set of terminal symbols to allow us to say when it is
that a hypergraph is terminally labelled, just like ET0L grammars.

Definition 3.4 (PHR Grammar). A parallel hyperedge replacement grammar of order k (k-PHR gram-
mar) is a tuple G = (C,A,S,T) where C = (Σ, type) is a signature, A ⊆ Σ is the set of terminal la-
bels, S ∈ Σ is the start symbol, and T = {Ti | i ∈ I} is a non-empty, finite set of tables over Σ in-
dexed by I with max({type(r) | r ∈

⋃
Ti∈T Ti}) ≤ k. We call Σ \ N the terminal labels and call G

repetition-free (proper) if all its tables are repetition-free (proper). The language generated by G is
L(G) = {H ∈HC | S•V∗T H with lab−1

H (A) = EH} ⊆HC .

Definition 3.5 (PHR Language). L ⊆ HC is called a (repetition-free) parallel hyperedge replacement
language of order k ((repetition-free) k-PHR language) if there is a (repetition-free) k-PHR grammar G
such that L(G) = L. The class of (repetition-free) PHR languages is the union of all (repetition-free)
k-PHR languages for k ≥ 0. Denote these PHRk and PHR (PHRrf

k and PHRrf).

Just like languages generated by hyperedge replacement, parallel hyperedge replacement languages
are closed under hypergraph isomorphism and are homogeneous in the sense that all hypergraphs in a
language have the same type. Next, we confirm that PHR languages strictly contain the HR languages:

Theorem 3.6 (PHR Generalises HR). For all k ≥ 0,HRk (PHRk andHRrf
k (PHRrf

k .

Proof. Suppose C = (Σ, type) and G = (C,N,S,{r1, . . . ,rn}) is a (repetition-free) k-HR grammar. Then
we construct a (repetition-free) k-PHR grammar G′ = (C,A,S,T) with A = Σ \N and T = {T1} where
T1 = {r1, . . . ,rn}∪ {(X ,X•) | X ∈ Σ}. Clearly every parallel direct derivation with start hypergraph G
can be decomposed into at most |EG| direct derivations where if an edge is replaced by itself, we omit
it, and if a genuine replacement from R occurs, we use that. So, by induction on derivation length, we
see that every parallel derivation in G′ can actually be written as a derivation in G. Similarly, every direct
derivation in G can be lifted to a parallel derivation in G′ by replacing all but one edge by itself. So, by
induction on derivation length, we see that every derivation in G can be written as a parallel derivation in
G′. Thus, together with the fact that the terminal symbols and start symbol coincide, L(G) = L(G′).

To see strictness, we are inspired by the fact that the string language {a2n | n ∈ N} is ET0L but not
MCF (Theorem 2.8). We will show there is a repetition-free 0-PHR language that is not k-HR for any
k ≥ 0. Let G = (C,A,S,T) be the repetition-free 0-PHR grammar with C = ({�},{(�,0)}), A = {�},
S = �, and T = {T1} where T1 = {(�,�• t�•)} (t denotes disjoint union of hypergraphs). Clearly
L(G) is the language of hypergraphs over C with 2n hyperedges. By Theorem 2.3, L(G) is not HR.

Corollary 3.7. PHR languages need not have only linear growth, in the sense of Theorem 2.3.

Figure 6 shows an example derivation using the grammar from the proof of Theorem 3.6.

3.2 Rational Control of Traces

It is often convenient to restrict the sequences of allowed traces when defining a language using a PHR
grammar, leading to better readability of grammars and possibly shorter proofs. A popular choice in L
systems is so-called rational control, and was considered for ET0L in 1975 by Nielsen [23] and later

8 Parallel Hyperedge Replacement String Languages

� V
�

�

V
�

�

�

�

V
�

�

�

�

�

�

�

�

Figure 6: Example parallel derivation

by Asveld [4]. We will make precise a notion of rational control for PHR grammars, and show that
generational power actually remains the same because we can always encode the rational control.

Definition 3.8 (Controlled Parallel Derivation). Given C = (Σ, type), H,H ′ ∈ HC , a finite set of tables
T = {Ti | i ∈ I} over Σ indexed by I, andM an FSA over I, we say H (M-)parallelly derives H ′ if H
parallelly derives H ′ with trace i1i2 · · · ik ∈ L(M). We write HVi1i2···ik

T H ′, HVk
T H ′, or HVM

T H ′.

Definition 3.9 (PHR Grammar with Control). A (repetition-free) parallel hyperedge replacement gram-
mar with control of order k ((repetition-free) k-PHR grammar with control) is a tuple G = (C,A,S,T ,M)
where (C,A,S,T) is a (repetition-free) k-PHR grammar (called the underlying grammar) with T indexed
by I, andM is an FSA over I (called the rational control). The generated language is L(G) = {H ∈HC |
S•VM

T H with lab−1
H (A) = EH} ⊆HC .

Theorem 3.10 (PHR Grammar Control Removal). Given a (repetition-free) k-PHR grammar with con-
trol G, one can effectively construct a (repetition-free) k-PHR grammar G′ such that L(G) = L(G′).

Proof. Let G = ((Σ, type),A,S,{T1, . . .Tl},M). Without loss of generality, we can assume that M =
(Q,n,δ , i,F)) is deterministic and full, and Q∩Σ= /0. We construct the (repetition-free) k-PHR grammar
G′ = ((Σ′, type′),A,S′,T ′). First, make a disjoint (from Σ1) copy of A, A, and to each X ∈ A, associate a
unique X ∈ A. Moreover, given a hypergraph H, denote by H the same hypergraph but with its labelling
function composed with the function that sends X ∈ A to X and leaves everything else in place. Next,
choose some additional fresh symbols: S′, F0, . . . ,Fk. Using these, we define Σ′ = {S′}∪Q∪Σ∪A∪
{F0, . . . ,Fl} where type(S′) = type(S), type(q) = 0 for all q ∈ Q, type′(X) = type(X) for all X ∈ Σ,
type′(X) = type(X) for all X ∈ A, and type′(Fj) = j for all j ∈ k.

Finally, let T ′ = {T ′0,T ′1, . . .T ′l } where T ′0 = {(S′,S• t i•)}∪ {(q, /0) | q ∈ F}∪ {(X ,X•) | X ∈ A}∪
{(X ,Ftype′(X)) | X ∈ (Q \F)∪Σ∪{F0, . . . ,Fk}} and for each j ∈ l, T ′j = {(L,R) | (L,R) ∈ Tj ∧L ∈ A}∪
{(L,R) | (L,R) ∈ Tj ∧L 6∈ A}∪{(q,δ (q, j)•) | q ∈ Q}∪{(X ,X•) | X ∈ {S′}∪A∪{F0, . . .Fk}}.

We can see that the purpose of table 0 is to start and stop the derivation process, with the rest of the
tables simulating the original system, while also simulating the automaton. So, if S•Vw

T H is a derivation
in G with H terminally labelled and w ∈ L(M), then there is a corresponding derivation S′•V0w0

T H in
G′. That is L(G)⊆ L(G′). To see the reverse inclusion, we analyse all derivations of the form S′•Vw

T H.
If w does not contain 0 at least twice, then H is necessarily not terminally labelled. So, useful derivations
must have trace x0y0z where x,y ∈ {1, . . . l}∗, z ∈ {0, . . . l}∗. Clearly if S′• Vx

T H ′, then H ′ ∼= S′•, so
we can assume x = ε . Similarly, if S′•V0y0

T H ′ and H ′Vz
T H, then either H ′ ∼= H if H was terminally

labelled, and so we could assume z = ε , or H ′ is labelled by at least non-terminal which has no terminally
labelled successor hypergraph, and so it doesn’t matter what H is. Finally, we analyse y. If y ∈ L(M),
then we proceed as in the analysis of the other direction of inclusion. If y 6∈ L(M), then the final step
sends the type zero symbol tracking the machine state to F0 which forces all successors of the hypergraph
to be not terminally labelled.

Thus, the hypergraph languages that can be generated by k-PHR grammars are exactly those that can
be generated by k-PHR grammars with control, since certainly no control can be simulated.

G. Campbell 9

3.3 PHRS Languages

We now turn our attention to string languages. We believe the class of parallel hyperedge replacement
string languages is a genuinely new class of languages, containing all multiple context-free and ET0L
languages. It is not simply equal to the (parallel) multiple context-free languages because these are
known to be incomparable with ET0L [24]. Recall that the hyperedge replacement string languages
are exactly the multiple context-free languages. In this subsection, we confirm that parallel hyperedge
replacement string languages contain all of these and also all of the ET0L languages.

Definition 3.11 (PHR String Language). A string language L ⊆ A∗ is called a (repetition-free) paral-
lel hyperedge replacement string language of order k ((repetition-free) k-PHRS language) if there is a
(repetition-free) k-PHR grammar G such that G generates a string graph language and STR(L(G)) =
L \{ε}. The class of (repetition-free) PHRS languages is the union of all (repetition-free) k-PHRS lan-
guages for k ≥ 2. Denote these PHRSk and PHRS (PHRS rf

k and PHRS rf).

Notice that we exclude the case k < 2, sincePHRS rf
0 =PHRS0 =PHRS rf

1 =PHRS1 = { /0,{ε}}.
It is clear that PHRS rf

k ⊆ PHRSk for k ≥ 2, and that we can iteratively compute the unreachable
symbols in a similar way as for context-free grammars (see Section 7.1 of [17]):

Definition 3.12 (Unreachable Symbol). Given a PHR grammar over (Σ, type), X ∈ Σ is called unreach-
able if there is no derivation starting at S• containing a hypergraph with a hyperedge labelled by X .

Lemma 3.13. For k ≥ 2, given a (repetition-free) k-PHR grammar G, one can effectively construct a
(repetition-free) k-PHR grammar G′ with no unreachable symbols and L(G) = L(G′).

The following lemma is also clear, using Lemma 3.13, enabling us to prove Theorem 3.15:

Lemma 3.14. For k ≥ 2, given a k-PHR grammar G generating a string graph language, one can effec-
tively construct a proper k-PHR grammar G′ such that there are no unreachable symbols, all terminals
are type 2, all non-terminals are type at least 2, and L(G) = L(G′).
Theorem 3.15 (PHRS Generalises ET0L). For all k ≥ 2, ET OL ⊆ PHRS rf

k . When k ≥ 4, ET OL (
PHRS rf

k . Moreover, ET OL= PHRS rf
2 = PHRS2.

Proof. First we show ET OL⊆PHRS rf
k for all k≥ 2. Suppose L is an ET0L language, then by Theorem

2.6, there exists a propagating ET0L grammar G = (Σ,A,S,{Ti | i ∈ I}) such that L \ {ε} = L(G). It
follows that every rule can be encoded as an HR rule over C′ = (Σ,Σ×{2}) giving us a repetition-free
2-PHR grammar G′ = (C′,A,S,{{(L,R•) | (L,R) ∈ Ti} | i ∈ I}) with L(G) = STR(L(G′)).

Next, we show that PHRS2 ⊆ ET OL. Suppose L is a 2-PHRS language, then there is a 2-PHR
grammar G = (C,A,S,{Ti | i ∈ I}) generating a string graph language such that L \ {ε} = STR(L(G)).
Lemma 3.14 allows us to assume a lot about the form of RHSs of rules. It is easy to see that all RHSs
must actually be string graphs, or could be transformed to string graphs, since any non-conformant pieces
can just be inlined into the string graph because it will ultimately be deleted and the nodes merged in any
terminally labelled derived hypergraph. So the system can be converted into an ET0L grammar. Thus,
we have PHRS2 ⊆ ET OL ⊆ PHRS rf

2 and PHRS rf
2 ⊆PHRS2, so the inclusions must be equalities.

Finally, strictness follows from Theorems 2.4, 2.8, and 3.6. That is, we can construct a repetition-free
4-PHR grammar G′ generating a string graph language with STR(L(G′)) = K \{ε} (from Theorem 2.8)
which is not ET0L.

Corollary 3.16. There are repetition-free 2-PHRS languages that are not semilinear.

Proof. Theorem 3.15 gives us a 2-PHRS language which is not semilinear by Theorem 2.8.

10 Parallel Hyperedge Replacement String Languages

Theorem 3.17 (PHRS Generalises MCF). For all k ≥ 2,HRS rf
k (PHRS rf

k .

Proof. Inclusion from Theorem 2.4, and Theorem 3.6 and its proof. We get strictness from Theorem 2.8
together with Theorem 3.15.

3.4 Formal Language Closure Properties

Recall that a full AFL is a non-empty class of string languages closed under rational operations (union,
concatenation, Kleene plus), rational intersection, homomorphisms, and inverse homomorphisms. In this
subsection, we show that the class of PHRS languages is an (iterated) substitution closed full AFL, and
that the class of repetition-free PHRS languages is closed under non-erasing (iterated) substitution with
closure under rational operations and non-erasing homomorphisms following from this as a corollary.

Theorem 3.18 (PHRS Closed Under Substitutions). Let L ⊆ A∗ be a k-PHRS language (repetition-free
k-PHRS language) and h be a k-PHRS substitution (non-erasing repetition-free k-PHRS substitution) on
A. Then h(L) and

⋃
n∈N hn(L) are k-PHRS languages (repetition-free k-PHRS languages).

Proof. There is a (repetition-free) k-PHR grammar G = (C,A,S,T) such that A = {a1, . . . ,am} and L(G)
is a string graph language, and STR(L(G)) = L\{ε}. Similarly for each i∈m, there is a (repetition-free)
k-PHR grammar Gi = (Ci,B,Si,Ti) such that L(G) is a string graph language and STR(L(Gi)) = h(ai).
Without loss of generality, we assume both that each Si does not appear as a label in any RHS apart from
possibly a rule (Si,S•i) and that the following sets are pairwise disjoint: Σ,B,Σ1 \B, . . . ,Σm \B. For each
i ∈ m, let Σi be a copy of Σi consisting of fresh symbols, and identify each x ∈ Σi with its copy x ∈ Σi.
Given a hypergraph H, by H we mean H but with its labelled function composed with the function which
takes any x ∈ Σi to x and leaves everything else fixed.

We now construct the (repetition-free) k-PHR grammar G′ = (C′,B,T ′,S) such that L(G′) is a string
graph language and STR(L(G′)) = h(L)\{ε}. Let C′= (Σ′, type′) be the union of all the above signatures
also including the disjoint copies, where copies are of the same type as their original symbols, together
with the fresh symbols F0, . . .Fk of type 0, . . . ,k, respectively. Finally, let R = {(X ,X•) | X ∈ Σ′}, F =
{(X ,F•type′(X)) | X ∈ Σ′}, and T ′ =

⋃
0≤i≤mT ′i , where T ′0 = {R⊕T | T ∈ T }∪{F ⊕{(ai,Si

•) | i ∈ m}},
and for each i ∈ m let Ti = {R⊕ ({(L,R) | (L,R) ∈ T}∪{(Si,Si

•)}) | T ∈ Ti}∪{R⊕ ({(X ,X•) | X ∈
B}∪{(X ,F•type′(X)) | X ∈ Σi \ (B∪{Si})})}.

One can see that derivations that make progress start with S• then apply tables from the first part
of T ′0 , simulating G. At some point, the final table of T ′0 may be applied, which immediately rewrites
all the terminals to encoded start symbols for their respective grammars for substitution and sends all
non-terminals to failure non-terminals. If a hypergraph contains any failure non-terminals at this point,
non terminally labelled hypergraph can be derived in future. Derivations can now simulate the Gi totally
independently, with choice of delaying start, giving total freedom over the simulated derivation sequences
for each instance of the encoded start symbol. Finally, the encoded systems can end their simulation at
any point by sending their encoded terminals to real terminals in B and their encoded non-terminals to
failure non-terminals. It is now clear that STR(L(G′)) = h(L)\{ε}, as required.

Showing
⋃

n∈N hn(L) is similar, modifying the above proof, adding another table which can be used
to send all terminals to restart the process and all non-terminals to a failure symbol.

Corollary 3.19 (PHRS Closed Under Homomorphisms). Let L⊆ A∗ be a k-PHRS language (repetition-
free k-PHRS language) for any k≥ 2 and ϕ : A∗→B∗ be a homomorphism (non-erasing homomorphism).
Then ϕ(L) is a k-PHRS language (repetition-free k-PHRS language).

G. Campbell 11

Next, we show closure under rational operations, which can be seen via the following general result:

Lemma 3.20. Let F be a class of string languages containing all regular languages, which is closed
under non-erasing substitution. Let L1,L2 ⊆ A∗1 be F languages. Then:

1. L1∪L2 is an F language; (closure under union)

2. L1L2 is an F language; (closure under concatenation)

3. L+
1 is an F language. (closure under Kleene plus)

Proof. To see (1), notice that L1∪L2 is simply h(K) where K = if ε ∈ L1∪L2 then {X ,Y,ε} else {X ,Y},
and h is a non-erasing substitution with h(X) = L1 \{ε} and h(Y) = L2 \{ε}. Thus we have L1∪L2 =
h(K), and since, in either case, K is a regular language, h(K) ∈ F . (2) and (3) are similar.

Theorem 3.21 (PHRS Closed Under Rational Operations). Let L1,L2 ⊆ A∗1 be (repetition-free) k-PHRS
languages for any k ≥ 2. Then:

1. L1∪L2 is a (repetition-free) k-PHRS language; (closure under union)

2. L1L2 is a (repetition-free) k-PHRS language; (closure under concatenation)

3. L+
1 is a (repetition-free) k-PHRS language. (closure under Kleene plus)

Proof. Combine Theorem 3.18 and Lemma 3.20.

We now show closure under rational intersection, inspired by the proof of Theorem V.1.7(iv) of [27]:

Theorem 3.22 (PHRS Closed Under Rational Intersection). Let L ⊆ A∗ be a (repetition-free) k-PHRS
language and K ⊆ B∗ be a regular language, for any k ≥ 2. Then L∩K is a (repetition-free) k-PHRS
language.

Proof. There is a (repetition-free) k-PHR grammar G = (C = (Σ, type),A,T = {T1, . . .Tn},S) such that
L(G) is a string graph language and STR(L(G)) = L \ {ε}. Without loss of generality, we assume that
(Σ\A)∩B = /0. There must also be a deterministic full FSAM= (Q,B,δ , p,F) such that L(M) = K \
{ε}. We will now construct a (repetition-free) k-PHR grammar with control G′ = (C′,A∩B,T ′,S,M′)
such that L(G′) is a string graph language and STR(L(G′)) = (L∩K)\{ε}, thus proving that L∩K is a
(repetition-free) k-PHRS language, using Theorem 3.10.

First, we define the signature C′. Let ∆ = (
⋃

0≤i≤k{type−1({i})×Qi}), Σ′ = ∆∪ {S} ∪ (A∩ B),
type′((X ,q1, . . .qi)) = type(X) for all (X ,q1, . . .qi) ∈ ∆, type′(S) = 2, and type′(X) = 2 for all X ∈ A∩B.

In order to define T ′ it will be useful to introduce the intermediate notion of a hypergraph with node
labels. In particular, we are interested in labelling the nodes by states ofM. A node labelled hypergraph
over (C,Q) is a pair (H, l) where H is a hypergraph over C and l is a function VH → Q. Notice that any
such node labelled hypergraph can be encoded as a hypergraph over (∆, type′|∆): for each e ∈ EH , the
new hyperedge labelling function is defined by sending e to (labH(e),q1, . . . ,qi) where i = typeH(e) and
q j = l(attH(e)(j)) for 1≤ j≤ i. Call this injective encoding function enc. Next, given a type t hypergraph
H over C and a sequence σ : t→Q, define CHOICESQ(H,σ) = {enc((H, l)) | l : VH →Q, l ◦extH = σ}.

We now define T ′ = {T ′0,T ′1, . . .T ′n} where:

1. T ′0 =R⊕{((X ,q1,q2),Y •) | X ∈ A∩B,δ (q1,X) = q2};
2. T ′i = R⊕ (

⋃
(L,R)∈Ti

{((L,σ(1), . . . ,σ(t)),H) | t = type(L),σ : t → Q,H ∈ CHOICESQ(R,σ)}∪
{(S,(S, p,q)•) | q ∈ F}), for 1≤ i≤ n;

whereR= {(X ,X•) | X ∈ Σ′}.

12 Parallel Hyperedge Replacement String Languages

Finally, letM′ be an FSA defined by the regular expression {1, . . . ,n}+0. Correctness follows from
the fact that the application of the final table T0 will produce a terminal string graph (x1x2 · · ·xm)

• if and
only if the previous hypergraph was a string graph of the form ((x1,q1,q2)(x2,q2,q3) · · ·(xm,qm,qm+1))

•

and δ (qi,xi) = qi+1 for 1≤ i≤ m, q1 = p, and qm+1 ∈ F . That is, we have traced out an accepting path
in the FSAM, having simulated G.

Finally, we show closure under inverse homomorphisms, via the following general result:

Lemma 3.23. LetF be a class of string languages which is closed under rational substitution and rational
intersection. Let L ⊆ A∗ be an F language and ϕ : B∗ → A∗ a homomorphism. Then ϕ−1(L) is an F
language too.

Proof. Let B be a copy of B such that (A∪B)∩B = /0, and let · : B→ B identify each b ∈ B with its copy
b∈ B. For each a∈ A, define the regular language La = {w1aw2 |w1,w2 ∈ B∗}⊆ (A∪B)∗ and the rational
substitution h on A by a 7→ La. Also define K =

⋃
n∈N{ϕ(x1)x1ϕ(x2)x2 · · ·ϕ(xn)xn | x1,x2, . . .xn ∈ B} and

the homomorphism ψ : (A∪B)∗→ B∗ by ψ(a) = ε for each a ∈ A and ψ(b) = b for each b ∈ B.
Notice h(L)∩K =

⋃
n∈N{ϕ(x1)x1ϕ(x2)x2 · · ·ϕ(xn)xn | x1, . . . ,xn ∈ B and ϕ(x1)ϕ(x2) · · ·ϕ(xn) ∈ L},

so we have ϕ−1(L) = ψ(h(L)∩K). Now, h(L) is an F language since F is closed under rational substi-
tution, h(L)∩K is an F language since F is closed under rational intersection, and ψ(h(L)∩K) is an F
language since F is closed under homomorphisms (a special case of rational substitution). Thus, ϕ−1(L)
is an F language, as required.

Theorem 3.24 (PHRS Closed Under Inverse Homomorphisms). For all k ≥ 2, PHRSk is closed under
inverse homomorphisms.

Proof. The result follows from Theorems 3.18 and 3.22 and Lemma 3.23.

3.5 Group Word Problem Closure Properties

Since the class of k-PHRS languages is a full AFL for any k ≥ 2, it satisfies the following important
properties:

Theorem 3.25 (WP Independent Of Presentation [15]). Let F be a class of string languages which is
closed under inverse homomorphisms, and let 〈X | R〉 be a presentation of a group G such that WPX(G)
is an F language. Then all presentations 〈X ′ | R′〉 of G are such that WPX ′(G) is an F language.

Theorem 3.26 (WP Subgroup and Supergroup Closure [11]). Let F be a full AFL and G be a group
with word problem in F . Then every finitely generated subgroup and every finite index supergroup of G
has word problem in F .

In 2019, Kropholler and Spriano showed that a graph of groups with vertex groups with MCF word
problem and edge groups finite, yields a group with an MCF word problem [20]. A special case of this
construction is a free product of groups. We now show that a free product of groups with (repetition-free)
PHRS word problems is a group with a (repetition-free) PHRS word problem. Our strategy is entirely
different to Kropholler and Spriano’s approach, which relied on Denkinger’s automata characterisation
of MCF languages (Theorem 2.4).

The following easy lemma, where presentations of groups are written as monoid presentations, gives
us a recursive description of the word problem of free products, enabling us to prove Theorem 3.28.

G. Campbell 13

Lemma 3.27. Let G1, G2 be finitely generated groups over disjoint alphabets A1 = {a1, . . .an}, A2 =
{b1, . . .bm}, respectively. If X = A1 ∪A2 and Li = WPAi(Gi) for i = 1,2, then WPX(G1 ∗G2) is the
smallest set L such that ε ∈ L and ∀i ∈ {1,2},∀w ∈ Li,∀u,v ∈ X∗,uv ∈ L⇒ uwv ∈ L.

Theorem 3.28 (WP Free Product Closure). Let F be a class of string languages containing all finite
languages, closed under union and concatenation, and closed under nested iterated substitution. Then if
G1, G2 are groups with presentations admitting a F word problem, G1 ∗G2 has a presentation admitting
a F word problem.

Proof. Let A1, A2, X , L1, L2, L be as in Lemma 3.27, then it is immediate that iterated application of
the nested non-erasing F-substitution h of strings on A1∪A2, defined by h(ai) = {ai}∪aiL1∪L1ai and
h(b j) = {b j}∪ b jL2 ∪L2b j for all i ∈ n, j ∈ m, to L, gives us exactly WPX(G1 ∗G2). The result them
follows from the assumed closure properties.

4 Conclusion and Future Work

We have shown some foundational properties of parallel hyperedge replacement grammars, with a focus
on string generational power, showing that the class of parallel hyperedge replacement string languages
is a substitution and iterated substitution closed full AFL, containing all MCF and ET0L languages.
Theorem 2.2 tells us that the string generational power of HR grammars is not restricted by requiring
grammars to be repetition-free. It remains future work to determine if a similar result holds in the parallel
replacement setting. If it turns out that there is no such result, there is still a middle-ground where one can
obtain all of the closure properties we have shown, but without allowing merging of nodes by derivations.
Call the below equivalent classes the repetition-free weak-coded k-PHRS languages (WPHRS rf

k):

1. The class of string languages generated by repetition-free k-PHR grammars under the image of
some weak coding.

2. The class of string languages generated by repetition-free k-PHR grammars with a special type 2
label empty, interpreted as the empty string by STR.

Using the results and proofs from Subsection 3.4, it is not too difficult to see that WPHRS rf
k is a

substitution and iterated substitution closed full AFL, and that PHRS rf
2 =WPHRS rf

2 = PHRS2, due
to the proof of Theorem 3.15. We conjecture this holds for all k ≥ 2:

Conjecture 4.1 (PHR String Generational Power). For all k ≥ 2, PHRS rf
k =WPHRS rf

k = PHRSk.

Figure 7 summarises the closure properties we know. It remains future work to show that the class
of PHRS languages is a strict subclass of the context-sensitive languages. We conjecture this to be true,
and we also conjecture that only even increments in order increase string generative power. Figure 8
summarises both our known and conjectured string language hierarchies.

Conjecture 4.2 (CS Generalises PHRS). PHRS (CS .

Conjecture 4.3 (PHRS Grouping). For all k ≥ 1, PHRS2k = PHRS2k+1.

Because PHRS is closed under inverse homomorphisms, we know that the property of having a
PHRS word problem is independent of the presentation. We have additionally shown that PHRS groups
are closed under free product. We also conjecture the following, which has a wide-reaching corollary:

Conjecture 4.4 (PHRS WP Double Torus). The fundamental group of the double torus admits a PHRS
word problem which is neither an MCF nor ET0L language.

14 Parallel Hyperedge Replacement String Languages

Corollary 4.5. If Conjecture 4.4 is true, then the word problem of any surface group is PHRS.

Proof. By a surface here, we mean a closed, connected, orientable, 2-manifold, and by a surface group,
we mean the fundamental group of a surface. Any surface always has a finite genus. The genus 0 surface
(the sphere) gives us the trivial group, and 1 (the torus), Z2 (see for example [21]). We know both of
these groups are regular, 2-MCF [16], respectively, so certainly PHRS (Theorem 3.17).

For higher genuses, it follows from the Fundamental Theorem of Covering Spaces (Theorem 1.38 of
[14]) that the fundamental group appears as a finitely generated subgroup of the fundamental group of a
genus 2 surface such as a double torus. Since PHRS is a full AFL, if the double torus has fundamental
group with PHRS word problem, then all its finitely generated subgroups do too (Theorem 3.26).

Highly related to the word problem is the consideration of sets of solutions of more general equations
over groups or other structures. It is a recent result that solution sets (of fixed normal forms) of finite
systems of equations in hyperbolic groups are EDT0L languages [5]. We are yet to consider deterministic
parallel hyperedge replacement, but it may be possible to establish that other classes of groups have
solution sets that are deterministic parallel hyperedge replacement string languages.

It remains future work to consider the effect of tables on generative power. It is a long-standing
result that ET0L grammars with only one table have less generative power than those with two tables,
and that allowing more than two tables does not increase generative power any further [27]. It is likely
that a similar result holds for PHR and PHRS languages. Other more general future work would include
investigating both the tree and graph generational power of PHR grammars, and investigating decidability
and complexity results for basic problems relating to PHR grammars. We do not know if the emptiness
or finiteness problems for PHR grammars are decidable, but we conjecture that they are.

Conjecture 4.6 (Decidable PHR Emptiness). The following problem is decidable:
Instance: A PHR grammar G = (C,A,S,T).
Question: Is L(G) = /0?

Conjecture 4.7 (Decidable PHR Finiteness). The following problem is decidable:
Instance: A PHR grammar G = (C,A,S,T).
Question: Does L(G) contain only finitely many non-isomorphic hypergraphs?

Operation/Class HRS rf
k

=HRSk

PHRS rf
k WPHRS rf

k PHRSk

Rational Operations 3 3 3 3

Rational Intersection 3 3 3 3

Inverse Homomorphisms 3 ? 3 3

Non-Erasing Homomorphisms 3 3 3 3

Arbitrary Homomorphisms 3 ? 3 3

Non-Erasing Substitutions 3 3 3 3

Arbitrary Substitutions 3 ? 3 3

Iterated Nested Non-Erasing Substitutions 3 3 3 3

Iterated Nested Arbitrary Substitutions 3 ? 3 3

Iterated Non-Erasing Substitutions 7 3 3 3

Iterated Arbitrary Substitutions 7 ? 3 3

Figure 7: Summary of formal language closure properties (k ≥ 2)

G. Campbell 15

MCF2 =HRS rf
4 =HRS rf

5
=HRS4 =HRS5

MCFk =HRS rf
2k =HRS rf

2k+1
=HRS2k =HRS2k+1

MCFk+1 =HRS rf
2k+2 =HRS rf

2k+3
=HRS2k+2 =HRS2k+3

MCF =HRS rf =HRS

CF =MCF1 =HRS rf
2 =HRS rf

3
=HRS2 =HRS3

ET OL= PHRS rf
2

=WPHRS rf
2 = PHRS2

PHRS rf
3

PHRS rf
4

PHRS rf
5

PHRS rf
2k

PHRS rf
2k+1

PHRS rf
2k+2

PHRS rf
2k+3

PHRS rf

CS

REC

WPHRS rf
3

WPHRS rf
4

WPHRS rf
5

WPHRS rf
2k

WPHRS rf
2k+1

WPHRS rf
2k+2

WPHRS rf
2k+3

WPHRS rf

PHRS3

PHRS4

PHRS5

PHRS2k

PHRS2k+1

PHRS2k+2

PHRS2k+3

PHRS

(a) Proved string language hierarchy

MCF2 =HRS rf
4 =HRS rf

5
=HRS4 =HRS5

MCFk =HRS rf
2k =HRS rf

2k+1
=HRS2k =HRS2k+1

MCFk+1 =HRS rf
2k+2 =HRS rf

2k+3
=HRS2k+2 =HRS2k+3

MCF =HRS rf =HRS

CF =MCF1 =HRS rf
2 =HRS rf

3
=HRS2 =HRS3

CS

REC

ET OL= PHRS rf
2 = PHRS rf

3 =WPHRS rf
2

=WPHRS rf
3 = PHRS2 = PHRS3

PHRS rf
4 = PHRS rf

5 =WPHRS rf
4

=WPHRS rf
5 = PHRS4 = PHRS5

PHRS rf
2k = PHRS rf

2k+1 =WPHRS rf
2k

=WPHRS rf
2k+1 = PHRS2k = PHRS2k+1

PHRS rf
2k+2 = PHRS rf

2k+3 =WPHRS rf
2k+2

=WPHRS rf
2k+3 = PHRS2k+2 = PHRS2k+3

PHRS rf =WPHRS rf = PHRS

(b) Conjectured string language hierarchy

Figure 8: Detailed formal language hierarchies (k ≥ 3)

Acknowledgements. I should like to thank Detlef Plump for introducing me to graph transformation and
teaching me to write papers for this audience, my supervisors Sarah Rees and Andrew Duncan for their
guidance, Annegret Habel and Meng-Che Ho for their helpful email discussions regarding hyperedge
replacement and surface groups, respectively, and Murray Elder for introducing me to MCF languages.
I am also grateful to the anonymous reviewers for their comments, leading to a much-improved paper.

References
[1] Alfred Aho (1968): Indexed Grammars – An Extension of Context-Free Grammars. Journal of the ACM

15(4), pp. 647–671, doi:10.1145/321479.321488.

[2] Alfred Aho & Jeffrey Ullman (1972): Translations on a Context Free Grammar. Information and Control
19(5), pp. 439–475, doi:10.1016/S0019-9958(71)90706-6.

[3] Anatoly Anisimov (1971): Group languages. Cybernetics 7, pp. 594–601, doi:10.1007/BF01071030.

[4] Peter Asveld (1977): Controlled iteration grammars and full hyper-AFL’s. Information and Control 34(3),
pp. 248–269, doi:10.1016/S0019-9958(77)90308-4.

[5] Laura Ciobanu & Murray Elder (2019): Solutions Sets to Systems of Equations in Hyperbolic Groups Are
EDT0L in PSPACE. In: Proc. 46th International Colloquium on Automata, Languages, and Programming
(ICALP 2019), Leibniz International Proceedings in Informatics (LIPIcs) 132, Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, pp. 110:1–110:15, doi:10.4230/LIPIcs.ICALP.2019.110.

[6] Laura Ciobanu, Murray Elder & Michal Ferov (2018): Applications of L systems to group theory. Interna-
tional Journal of Algebra and Computation 28(2), pp. 309–329, doi:10.1142/S0218196718500145.

[7] Tobias Denkinger (2016): An Automata Characterisation for Multiple Context-Free Languages. In: Proc.
International Conference on Developments in Language Theory (DLT 2016), Lecture Notes in Computer
Science 9840, Springer, pp. 138–150, doi:10.1007/978-3-662-53132-7 12.

[8] Frank Drewes, Hans-Jörg Kreowski & Annegret Habel (1997): Hyperedge Replacement Graph Grammars,
pp. 95–162. World Scientific, doi:10.1142/9789812384720 0002.

[9] Andrzej Ehrenfeucht & Grzegorz Rozenberg (1977): On some context-free languages that are not determinis-
tic ET0L languages. R.A.I.R.O. Informatique théorique 11(4), pp. 273–291, doi:10.1051/ita/1977110402731.

http://dx.doi.org/10.1145/321479.321488
http://dx.doi.org/10.1016/S0019-9958(71)90706-6
http://dx.doi.org/10.1007/BF01071030
http://dx.doi.org/10.1016/S0019-9958(77)90308-4
http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.110
http://dx.doi.org/10.1142/S0218196718500145
http://dx.doi.org/10.1007/978-3-662-53132-7_12
http://dx.doi.org/10.1142/9789812384720_0002
http://dx.doi.org/10.1051/ita/1977110402731

16 Parallel Hyperedge Replacement String Languages

[10] Joost Engelfriet & Linda Heyker (1991): The string generating power of context-free hypergraph grammars.
Journal of Computer and System Sciences 43(2), pp. 328–360, doi:10.1016/0022-0000(91)90018-Z.

[11] Robert Gilman, Robert Kropholler & Saul Schleimer (2018): Groups whose word problems are not semilin-
ear. Groups Complexity Cryptology 10(2), pp. 53–62, doi:10.1515/gcc-2018-0010.

[12] Robert Gilman & Michael Shapiro (1998): On groups whose word problem is solved by a nested stack
automaton. Available at https://arxiv.org/abs/math/9812028.

[13] Annegret Habel (1992): Hyperedge Replacement: Grammars and Languages. Lecture Notes in Computer
Science 643, Springer, doi:10.1007/BFb0013875.

[14] Allen Hatcher (2002): Algebraic Topology. Cambridge University Press.
[15] Thomas Herbst & Richard Thomas (1993): Group presentations, formal languages and characterizations of

one-counter groups. Theoretical Computer Science 112(2), pp. 187–213, doi:10.1016/0304-3975(93)90018-
O.

[16] Meng-Che Ho (2018): The word problem of Zn is a multiple context-free language. Groups Complexity
Cryptology 10(1), pp. 9–15, doi:10.1515/gcc-2018-0003.

[17] John Hopcroft, Rajeev Motwani & Jeffrey Ullman (2006): Introduction to Automata Theory, Languages, and
Computation, 3rd ed. edition. Addison-Wesley.

[18] Hans-Jörg Kreowski (1992): Parallel Hyperedge Replacement, pp. 271–282. Springer, doi:10.1007/978-3-
642-58117-5 17.

[19] Hans-Jörg Kreowski (1993): Five facets of hyperedge replacement beyond context-freeness. In: Proc. 9th
International Conference on Fundamentals of Computation Theory (FCT 1993), Lecture Notes in Computer
Science 710, Springer, pp. 69–86, doi:10.1007/3-540-57163-9 5.

[20] Robert Kropholler & Davide Spriano (2019): Closure properties in the class of multiple context-free groups.
Groups Complexity Cryptology 11(1), pp. 1–15, doi:10.1515/gcc-2019-2004.

[21] William Massey (1977): Algebraic Topology: An Introduction. Graduate Texts in Mathematics 56, Springer.
[22] David Muller & Paul Schupp (1983): Groups, the Theory of Ends, and Context-Free Languages. Journal of

Computer and System Sciences 26(3), pp. 295–310, doi:10.1016/0022-0000(83)90003-X.
[23] Mogens Nielsen (1975): EOL systems with control devices. Acta Informatica 4, pp. 373–386,

doi:10.1007/BF00289618.
[24] Taishin Nishida & Shigeko Seki (2000): Grouped partial ET0L systems and parallel multiple context-free

grammars. Theoretical Computer Science 246(1–2), pp. 131–150, doi:10.1016/S0304-3975(99)00076-6.
[25] Pyotr Novikov (1955): Über die algorithmische Unentscheidbarkeit des Wortproblems in der Gruppentheo-

rie. Trudy Matematicheskogo Instituta imeni V.A. Steklova 44, pp. 1–143.
[26] Rohit Parikh (1966): On Context-Free Languages. Journal of the ACM 13(4), pp. 570–581,

doi:10.1145/321356.321364.
[27] Grzegorz Rozenberg & Arto Salomaa (1980): The Mathematical Theory of L Systems. Pure and Applied

Mathematics 90, Academic Press.
[28] Sylvain Salvati (2015): MIX is a 2-MCFL and the word problem in Z2 is captured by the IO and the OI hier-

archies. Journal of Computer and System Sciences 81(7), pp. 1252–1277, doi:10.1016/j.jcss.2015.03.004.
[29] Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii & Tadao Kasami (1991): On multiple context-free gram-

mars. Theoretical Computer Science 88(2), pp. 191–229, doi:10.1016/0304-3975(91)90374-B.
[30] Vijay Shanker, David Weir & Aravind Joshi (1987): Characterizing structural descriptions produced by var-

ious grammatical formalisms. In: Proc. 25th Annual Meeting on Association for Computational Linguistics
(ACL ’87), Association for Computational Linguistics, pp. 104–111, doi:10.3115/981175.981190.

[31] David Weir (1992): Linear context-free rewriting systems and deterministic tree-walking transducers. In:
Proc. 30th Annual Meeting of the Association for Computational Linguistics, Association for Computational
Linguistics, pp. 136–143, doi:10.3115/981967.981985.

http://dx.doi.org/10.1016/0022-0000(91)90018-Z
http://dx.doi.org/10.1515/gcc-2018-0010
https://arxiv.org/abs/math/9812028
http://dx.doi.org/10.1007/BFb0013875
http://dx.doi.org/10.1016/0304-3975(93)90018-O
http://dx.doi.org/10.1016/0304-3975(93)90018-O
http://dx.doi.org/10.1515/gcc-2018-0003
http://dx.doi.org/10.1007/978-3-642-58117-5_17
http://dx.doi.org/10.1007/978-3-642-58117-5_17
http://dx.doi.org/10.1007/3-540-57163-9_5
http://dx.doi.org/10.1515/gcc-2019-2004
http://dx.doi.org/10.1016/0022-0000(83)90003-X
http://dx.doi.org/10.1007/BF00289618
http://dx.doi.org/10.1016/S0304-3975(99)00076-6
http://dx.doi.org/10.1145/321356.321364
http://dx.doi.org/10.1016/j.jcss.2015.03.004
http://dx.doi.org/10.1016/0304-3975(91)90374-B
http://dx.doi.org/10.3115/981175.981190
http://dx.doi.org/10.3115/981967.981985

	Introduction
	Preliminaries
	Hyperedge Replacement
	ET0L Languages

	New Results
	Parallel Hyperedge Replacement
	Rational Control of Traces
	PHRS Languages
	Formal Language Closure Properties
	Group Word Problem Closure Properties

	Conclusion and Future Work

