
Parallel Hyperedge Replacement Grammars

Graham Campbella,1

aSchool of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon
Tyne, United Kingdom

Abstract

In 2018, it was shown that all finitely generated virtually Abelian groups have
multiple context-free word problems, and it is still an open problem as to where
to precisely place the word problems of hyperbolic groups in the formal language
hierarchy. Motivated by this, we introduce a new language class, the parallel hy-
peredge replacement string languages, containing all multiple context-free and
ET0L languages. We show that parallel hyperedge replacement grammars can
be “synchronised”, which allows us to establish many useful formal language
closure results relating to both the hypergraph and string languages generated
by various families of parallel hyperedge replacement grammars, laying the foun-
dations for future work in this area.

Keywords: Hyperedge Replacement, Lindenmayer Systems, E0L Languages,
ET0L Languages, Multiple Context-Free Languages, Word Problems

1. Introduction

Lindenmayer systems (L systems) originated in the late 1960s to model the
development of multicellular organisms [1, 2, 3], and since then, the string gener-
ational power of various families of L system has been extensively studied [4, 5].
The family of extended table zero-interaction Lindenmayer (ET0L) string lan-
guages is particularly important due to its closure properties and equivalence
to many other families of L systems. On the other side of the picture, hy-
peredge replacement appeared in the early 1970s [6, 7] as a generalisation of
context-free string rewriting for hypergraphs, and it was shown that the string
generational power of hyperedge replacement grammars is the same as that of
multiple context-free grammars [8, 9, 10].

Looking purely at string language generation, one can view ET0L grammars
as a generalisation of context-free grammars with parallel rewriting, and simi-
larly, one can view the class of string generating hyperedge replacement gram-
mars as a generalisation of context-free grammars where intermediate states

Email address: g.j.campbell2@newcastle.ac.uk (Graham Campbell)
1Supported by a Doctoral Training Grant No. (2281162) from the Engineering and Physical

Sciences Research Council (EPSRC) in the UK.

1

can be hypergraphs, rather than just strings. In this paper, we combine both
of these ideas, to explore the string generational power of grammars that can
exploit the additional power of both hypergraphs and parallel rewriting.

A major motivation of this work is the study of word problems of finitely
generated groups. In general, the word problem is the question that asks if two
strings (words) represent the same element in some structure. In the case of
groups, this is the equivalent to asking if a given string represents the identity
element, since if u, v are strings, then they are equal in a group if and only if
uv−1 represents the identity in the group. Thus, given a presentation 〈X | R〉
for a group G, the word problem is equivalent to the membership problem for
the string language WPX(G) = {w ∈ (X ∪ X−1)∗ | w =G 1G}. Recall that
the Cayley graph of a group with respect to a fixed presentation has the group
elements as vertices and an edge between two vertices g, h ∈ G whenever there
is a generator s ∈ X such that gs = h. Viewing things geometrically, the word
problem of a group can be identified with the set of loops based at the identity
in the Cayley graph. A sketch of a finite portion of the Cayley graphs of Z2 and
F2 with their usual generating sets is provided in Figure 1.

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

(a) Cayley graph of Z2

a

b

a

b

a

b

b

ab

b

aba

a

b

a

a

b

b

a b

b

a b a

a

b

a

a

b

a ab

b

aba

ba

b

a

b

a a

b

b

a

b

a

b

a b

(b) Cayley graph of F2

Figure 1: Example Cayley graphs

A natural question to ask is how hard the word problem is, in general, and
for specific families of groups. Unsurprisingly, both the universal word problem
and the word problem are undecidable in general, even for finite presentations
[11]. It is well known that a presentation defines a finite group if and only if it
admits a regular word problem [12], and defines a finitely generated virtually
free group if and only if it admits a deterministic context-free word problem if
and only if it admits a context-free word problem [13]. The multiple context-free
(MCF) languages sit strictly in between the context-free and context-sensitive
languages [8]. In 2015, a major breakthrough of Salvati was published, showing
that the word problem of Z2 is an MCF language [14], and in 2018, Ho ex-
tended this result to all finitely generated virtually Abelian groups [15]. This is
interesting since the MCF languages are exactly the string languages generated
by hyperedge replacement grammars [9, 10]. It remains an open problem as to

2

which other families of groups admit MCF word problems, however, we do at
least know that the fundamental group of a hyperbolic three-manifold does not
admit an MCF word problem [16].

There are of course, lots of other well-behaved language classes sitting in
between the context-free and context-sensitive classes, such as the indexed lan-
guages [17] or the subclass of ET0L languages [4]. It is not known if there are any
groups with indexed word problems, other than the virtually free groups, but
it is known that a particular subclass of the indexed languages, not contained
in ET0L, only contains word problems of virtually free groups [18]. We also do
not know if any hyperbolic groups have ET0L word problems [19] (other than
the virtually free groups), such as the fundamental group of the double torus. It
is conjectured that every ET0L group language is admitted by a virtually free
group [19]. Figure 2 shows the (group) language hierarchy, where necessarily
strict inclusion uses a solid line, and GP denotes the class of all group languages
(the class of word problems of all finitely generated groups). Descriptions of the
other language classes can be found in Section 2.

CS

INDEX
MCF

ET OL

CF

DCF

REG

(a) String language hierarchy

CS ∩ GP

INDEX ∩ GP
MCF ∩ GP

ET OL ∩ GP

DCF ∩ GP = CF ∩ GP

REG ∩ GP

(b) Group language hierarchy

Figure 2: Previously known formal language hierarchies

In this paper, we define and study a new string language class, combining
ideas from both ET0L and hyperedge replacement grammars. We call our new
class the parallel hyperedge replacement string (PHRS) languages, and show
that the class strictly contains both the classes of MCF and ET0L languages,
that it is a hyper-algebraically closed super abstract family of languages, and
that PHRS group languages are closed under free product. While parallel hy-
peredge replacement has been considered before, most notably by Habel and
Kreowski (separately) [20, 21, 22], the work is not extensive and does not con-
sider repetition-freeness, rational control, number of tables, or string genera-
tional power. Figure 3 summarises how the PHRS and repetition-free PHRS
languages fit into the string language hierarchy and also how we conjecture the
hierarchy collapses when we restrict to group languages. At the end of the pa-
per, we provide much more detailed diagrams, showing both hypergraph and
string language hierarchies. Our long term goal is to place the word problem for

3

as many hyperbolic groups as possible in the PHRS class. Knowledge of (geo-
metric) group theory and word problems is not required to read and understand
this paper - it is purely motivational!

This paper is based on, and replaces, the author’s TERMGRAPH 2020 work-
shop proceedings paper [23], with significant revisions, improvements, and new
results. Most notably, in the workshop paper, the number of tables was not
considered at all. Consideration of the number of tables was a major undertak-
ing, leading to the strengthening of many of the existing results, many of which
requiring entirely new proofs, also leading to the creation of Subsection 3.5
looking at synchronisation of grammars and substitution closure. Moreover, we
were able to additionally show that the PHRS languages are hyper-algebraically
closed. The second most notable addition is showing that the PHRS member-
ship problem is decidable (Subsection 3.6) which provides us with an algorithm
for computing membership of PHRS languages (Subsection 4.4). Finally, with-
out the space limitations of a workshop paper, we were able to provide a more
self-contained preliminaries section (Section 2), some additional examples in the
main part of the paper, and a more detailed handling of WPHRS languages.

REC

CS

PHRS

PHRSrf
INDEX

MCF ET OL

CF

DCF

REG

(a) Proved string language hierarchy

REC ∩ GP

CS ∩ GP

PHRSrf ∩ GP ?
= PHRS ∩ GP

MCF ∩ GP

DCF ∩ GP 3
= CF ∩ GP

?
= ET OL ∩ GP ?

= INDEX ∩ GP

REG ∩ GP

(b) Conjectured group language hierarchy

Figure 3: New formal language hierarchies

2. Preliminaries

Before we get started, we must give some preliminary notations and known
results. By N we mean the natural numbers including zero, by n we mean
{1, . . . , n}, and ⊕ denotes relational override. Given a set S, denote by P(S)
the set of all subsets of S and P0(S) = P(S) \ {∅}. A (finite) sequence on a
set S is a function σ : n → S, we view strings as sequences on an alphabet.
We denote by S∗ all sequences on a set S, and denote subsequence (scattered
subsequence) by v (vsc).

4

2.1. String Languages

In this paper, all alphabets will be finite. We can equivalently view A∗ as
the free monoid on A. A string language L ⊆ A∗ is simply a set of strings over
some alphabet A. It is elementary that monoid homomorphisms ϕ : A∗ → B∗

are totally determined by their values on A. We call ϕ non-erasing if ε 6∈ ϕ(A),
a coding (letter-to-letter homomorphism) if ϕ(A) ⊆ B, and a weak coding if
ϕ(A) ⊆ B ∪ {ε}.

By a family of string languages, we mean an isomorphism-closed (closed
under renaming of symbols), non-trivial (contains languages other than ∅, {ε})
class of string languages. Given a family of string languages F and alphabets
A,B, an F-substitution of strings on A is a function h : A → P0(B∗) such
that for each a ∈ A, h(a) ∈ F . When F is the family of all finite string
languages, we call h a finite substitution of strings. If h is such that for each
a ∈ A, a ∈ h(a), then we call h nested, and if ε 6∈ h(A), then we call h non-
erasing. Given a string w = x1 · · ·xn over A, write h(w) for the language
{w′ ∈ B∗ | ∃w1 ∈ h(x1), . . . ,∃wn ∈ h(xn), w′ = w1 · · ·wn}, and given a string
language L over A, write h(L) for the language

⋃
w∈L h(w).

A family of string languages F is called a cone if it is closed under homomor-
phisms, inverse homomorphisms, and intersection with regular languages. That
is, if L ⊆ A∗ is an F language, L′ ⊆ B∗ is an F language, K ⊆ A∗ is a regular
language, and ϕ : A∗ → B∗ is a homomorphism, then ϕ(L) ∈ F , ϕ−1(L′) ∈ F ,
and L ∩ K ∈ F . The rational operations are union (L1 ∪ L2), concatenation
(L1L2 = {w1w2 | w1 ∈ L1, w2 ∈ L2}), and Kleene plus (L+ =

⋃
i≥1{wi | w ∈

L}). F is called a full abstract family of languages (full AFL) if it is both a
cone and is closed under the rational operations. That is, if L1, L2 ⊆ A∗ are
F languages, then L1 ∪ L2 ∈ F , L1L2 ∈ F , and L+

1 ∈ F . Call F substitution
closed if for any F language L ⊆ A∗ and F-substitution h of strings on A,
h(L) ∈ F . Call F (nested) iterated substitution closed if for any F language
L ⊆ A∗ and a (nested) F-substitution h of strings on A,

⋃
n∈N h

n(L) ∈ F , where
hn(L) = h(· · ·h(L) · · ·). A full AFL is called a super AFL if it is additionally
substitution and nested iterated substitution closed.

We denote by REG, DCF , CF , CS, REC, RE the families of regular, de-
terministic context-free (DCF), context-free (CF), context sensitive, recursive,
and recursively enumerable string languages, respectively. One can consult any
undergraduate textbook on formal languages and automata such as [24] for
an introduction to these language families. These language families enjoy the
following hierarchy: REG (DCF (CF (CS (REC (RE .

2.2. MCF Languages

The multiple context-free languages were defined by Seki, Matsumura, Fujii,
and Kasami in the early 90s [8] as a conservative extension of the context-
free language, showing that the family was a substitution closed full AFL, and
closure under nested iterated substitution is also obvious by trivial modification
of Král’s proof for context-free languages [25] (Theorem 2.1). Various alternative
descriptions of the MCF languages have now been established (Theorem 2.2).

5

The actual definition of MCF grammars will not matter to us, since we will
only be interested in the hyperedge replacement characterisation. We denote
byMCFk andMCF the order at most k multiple context-free languages and the
multiple context-free languages, respectively. These families enjoy the following
hierarchy: CF =MCF1 (· · · (MCFk (MCFk+1 (· · · (MCF (CS.

Theorem 2.1 (MCF Closure Properties [25, 8]). For k ≥ 1,MCFk andMCF
are super AFLs.

Theorem 2.2 (MCF Equivalence). The following families of languages are
equivalent, for any k ≥ 1:

1. HRS2k = HRS2k+1 = HRSrf
2k = HRSrf

2k+1: the string languages of
(repetition-free) hyperedge replacement grammars of order 2k or 2k + 1
(see Subsection 2.4);

2. OUT(DT WTk): the output languages of deterministic tree walking trans-
ducers of crossing number at most k (see [26]);

3. LCFRk: the string languages of linear context-free rewriting systems of
rank at most k (see [27]);

4. MCFk: the languages of k-multiple context-free grammars (see [8]);

5. RT SAk: the languages of k-restricted tree stack automata (see [28]).

Proof. HRSk = HRSrf
k for all k ≥ 2 is due to Theorem 2.12 and HRSrf

2k+1 ⊆
OUT(DT WTk) ⊆ HRS2k for all k ≥ 1 is due to Engelfriet and Heyker (1991)
[9], which gives us the all the equalities in (1) and (1) = (2). (2) = (3) is due to
Weir (1992) [10], (3) = (4) is due to Seki, Matsumura, Fujii, and Kasami (1991)
[8], and (4) = (5) is due to Denkinger (2016) [28].

Call a set S ⊆ Nd linear if it is of the form {p+a1p1+· · · anpn | a1, . . . an ∈ N}
for some fixed p, p1, . . . pn ∈ Nd. Call S semilinear if it is a finite union of linear
sets. The Parikh vector of a string w over an ordered alphabet A = (a1, . . . , ad)
is ψA(w) = (|w|a1

, . . . , |w|ad
) where |w|ai

counts the number of occurrences of
ai in w. A string language L is called linear (semilinear) if the set of Parikh
vectors ψA(L) is linear (semilinear). Two string languages L1, L2 ⊆ A∗ are
called letter-equivalent if ψA(L1) = ψA(L2). In 1961, Parikh circulated the
following famous results, re-published in 1966, showing that all context-free
languages are semilinear, and that being semilinear amounts to being letter-
equivalent to a regular language:

Theorem 2.3 (Parikh’s Theorem I [29]). If L ∈ CF , then L is semilinear.

Theorem 2.4 (Parikh’s Theorem II [29]). A string language L is semilinear if
and only if it is letter-equivalent to a regular language.

Corollary 2.5. If L ⊆ {a}∗ is semilinear, then L ∈ REG.

In 1991, Seki et al. showed that all MCF languages are semilinear:

Theorem 2.6 (MCF Semilinear [8]). If L ∈MCF , then L is semilinear.

6

2.3. ET0L Languages

Lindenmayer systems (L systems) were introduced in 1968 by Aristid Lin-
denmayer [1, 2, 3]. We direct the reader to [4] for a comprehensive introduction
to the topic. We are interested in the family of string languages called the ET0L
languages. These languages are described by a specific type of L system.

Given a set H of substitutions of strings on Σ and a language L ⊆ Σ∗, we
define ITERH(L) =

⋃
n∈N{hn(· · ·h1(L) · · ·) | h1, . . . , hn ∈ H}. A table over

Σ is a left-total finite binary relation T ⊆ Σ × Σ∗, and can be associated to a
finite substitution hT where hT (a) = {b ∈ Σ∗ | (a, b) ∈ T} for each a ∈ Σ. An
ET0L grammar is a tuple G = (Σ, A, S, T) where Σ is an alphabet, A ⊆ Σ is
the terminal alphabet, S ∈ Σ is the start symbol and T is a finite set of tables
over Σ. The language generated by G is L(G) = ITER{hT |T∈T }({S}) ∩ A∗. A
language L ⊆ A∗ is called an ET0L language if there exists an ET0L grammar G
such that L(G) = L, and is called E0L if the grammar contains only one table. It
will be convenient to think of table entries as rules and substitutions as parallel
rewriting, and we will take this view in Section 3. We denote the E0L, ET0L,
and indexed language families by EOL, ET OL, and INDEX , respectively, and
we have the following strict inclusions: CF (EOL (ET OL (INDEX (CS.

Call an ET0L grammar propagating if each table is contained in Σ × Σ+

(rather than just Σ × Σ∗). That is, rules have non-empty right-hand sides.
ET0L grammars can be assumed to be propagating:

Theorem 2.7 (Propagating ET0L Generative Power [4]). Given an ET0L
grammar G, one can effectively construct a propagating ET0L grammar G′ with
the same number of tables such that L(G) \ {ε} = L(G′).

An extremely useful notion in L systems is that of a synchronised system.
Call an ET0L grammar (Σ, A, S, T) synchronised if any string w,∈ A∗ and any
table T ∈ T , hT (w) 6∈ A∗. ET0L grammars can always be synchronised:

Theorem 2.8 (Synchronisation of ET0L Grammars [4]). Given a (propagating)
ET0L grammar G, one can effectively construct a synchronised (propagating)
ET0L grammar G′ with the same number of tables such that L(G) = L(G′).

A family of string languages F is called hyper-algebraically closed if for
any F language L ⊆ A∗ and finite set H of F-substitutions of strings on A,
ITERH(L) ∈ F . Clearly hyper-algebraic closure implies closure under (nested)
iterated substitution, viewed as a special case with |H| = 1.

Theorem 2.9 (ET0L Closure Properties [30]). ET OL is a hyper-algebraically
closed super AFL. Moreover, it is the smallest hyper-algebraically closed super
AFL. EOL is closed under finite substitution, intersection with regular lan-
guages, and rational operations.

For any n ≥ 1, the order n Dyck language Dn is generated by the context-free
grammar with start symbol S, terminal set {a1, a

′
1, . . . , an, a

′
n}, and rules S →

ε, S → SS, S → a1Sa
′
1, . . . , S → anSa

′
n. In 1977, Ehrenfeucht and Rozenberg

showed that for all n ≥ 8, Dn is not an EDT0L language [31]. With not too
much work, this gives us the following result:

7

Theorem 2.10 (MCF and ET0L Incomparable).

1. K = {wh(w) | w ∈ D8} is a 2-MCF language which is not ET0L, where Σ
is a disjoint copy of Σ and h : Σ∗ → Σ∗ is defined by sending each a ∈ Σ
to its copy a ∈ Σ.

2. L = {a2n | n ≥ 0} is an E0L language but not MCF. Moreover, L is not
semilinear.

Proof. The first part follows from Theorem 8 of [32], which holds for any lan-
guage in place of D8 which is context-free but not EDT0L.

For the second part, it is easy to see that G = ({a}, {a}, a, {{(a, aa)}}) is
an ET0L grammar using one table with L(G) = L. Corollary 2.5 tells us L is
semilinear if and only if it is regular, and clearly that language is not regular, so
it cannot be semilinear. Theorem 2.6 tells us all MCF languages are semilinear,
so it must be the case that L is not MCF.

2.4. Hyperedge Replacement

This subsection is mostly based on [20, 33]. By a signature we mean a pair
C = (Σ, type) where Σ is some alphabet, called the label set, and type : Σ→ N
is a typing function which assigns to each label an arity called its type. We
usually will assume some arbitrary but fixed signature C = (Σ, type).

A hypergraph is a tuple H = (VH , EH , attH , labH , extH) where VH is a finite
set of nodes, EH is a finite set of hyperedges, attH : EH → V ∗H is the attachment
function, labH : EH → Σ is the labelling function, and extH ∈ V ∗H are the
external nodes, such that labelling is compatible with typing (type ◦ labH =
|·| ◦ attH). In an abuse of notation, we write type(H) = |extH | for the type
of H, and define typeH : EH → N by typeH = type ◦ labH for the type of
a hyperedge. For any hyperedge e ∈ EH , whenever m = typeH(e) we call e
a type m hyperedge, and call e proper whenever attH(e) is injective (contains
no repeated nodes). Call H proper if every e ∈ EH is proper, repetition-free
if extH is injective, and well-formed if it is both proper and repetition-free.
The class of all hypergraphs (repetition-free hypergraphs) over C is denoted HC
(Hrf
C). A hypergraph morphism g : G → H between G,H ∈ HC is a pair of

functions (gV : VG → VH , gE : EG → EH) such that attH ◦ gE = g∗V ◦ attG,
labH ◦ gE = labG, and gV ◦ extG vsc extH . g is called external node reflecting
if gV ◦ extG = extH , is called injective (surjective, bijective) whenever both gV
and gE are injective (surjective, bijective), and is called hyperedge-injective if
gE is injective. We say two hypergraphs G,H ∈ HC are isomorphic (G ∼= H)
there is a bijective external node reflecting hypergraph morphism G→ H.

Given a string w ∈ Σ∗ of length n, its string graph is w• = ({v0, . . . , vn},
{e1, . . . , en}), att, lab, v0vn) where att(ei) = vi−1vi and lab(ei) = w(i) for all
i ∈ n (Figure 4(a)). If H ∼= w• for some w ∈ Σ∗, we call H a string graph
representing w. We also use the superscript bullet to denote the handle of a
label. If X ∈ Σ is of type n, then the handle of X is the hypergraph X• =
({v1, . . . , vn}, {e}, att, lab, v1 · · · vn) where att(e) = v1 · · · vn and lab(e) = X
(Figure 4(b)). These two definitions coincide for a type 2 label, considered
either as a string of length 1 or as a label, so there can be no confusion.

8

1
w(1) w(2) · · · w(n)

2

1 2 1 2 1 2

(a) String graph w•

X

1 2

3· · ·n

1 2

3n

(b) Handle X•

Figure 4: Example hypergraphs

Let H ∈ HC be a hypergraph and B ⊆ EH be a selection of hyperedges.
Then σ : B → HC is called a replacement function if type ◦ σ = typeH|B .
The replacement of B in H using σ is denoted by H[σ], and is the hypergraph
obtained from H by removing B from EH , disjointly adding the nodes and
hyperedges of σ(e), for each e ∈ B, and identifying the i-th external node of
σ(e) with the i-th attachment node of e, for each e ∈ B and i ∈ typeH(e). The
external nodes of H[σ] remain exactly those of H and all hyperedges keep their
original attachments and labels. H[σ] exists exactly when σ : B → HC is a
replacement function, and is unique up to isomorphism. If B = {e1, . . . , en}
and Ri = σ(ei) for all i ∈ n, then we write H[e1/R1, . . . , en/Rn] in place of
H[σ]. Figure 5 shows an example replacement.

v1

1

v2

e1

X
v3

e2

Y
v4

2
e3

Y

1

2

3 1 2

1
2

(a) Hypergraph H

v1

1

v2

e1

X
v3

2

1

2

3

(b) Hypergraph R

v1

1

v2

e1

X
v3

e4

X

v4

v5

2
e3

Y

1

2

3
1

2

3

1
2

(c) Hypergraph H[e2/R]

Figure 5: Example hyperedge replacement

Let N ⊆ Σ be a set of non-terminals. A type n rule over N is a pair (L,R)
with L ∈ N , R ∈ HC , and type(L) = type(R) = n. Call a rule (L,R) repetition-
free (proper, well-formed) if R is repetition-free (proper, well-formed). Given a
hypergraph H ∈ HC and a set of rules R, if e ∈ EH and (labH(e), R) ∈ R, then
we say that H directly derives H ′ ∼= H[e/R] and write H ⇒R H ′. For a given
hyperedge e and choice of rule, H ′ is unique up to isomorphism. Clearly ⇒R
is a binary relation on HC . We say H ∈ HC derives H ′ if there is a sequence

9

H ⇒R H1 ⇒R · · · ⇒R Hk = H ′ for some k ≥ 1 or H ∼= H ′. We write
H ⇒k

R H ′ or H ⇒∗R H ′. Clearly, (direct) derivations cannot delete nodes, and
(direct) derivations made using repetition-free rules cannot merge nodes. We
have the following result for repetition-free rules:

Theorem 2.11 (HR Context-Freeness [20]). Let R be a set of repetition-
free rules over N , H ∈ HC , X ∈ N , and k ∈ N. Then there is a deriva-
tion X• ⇒k+1 H if and only if there is a rule (X,R) ∈ R and a mapping
σ : lab−1

R (N) → HC such that H = R[σ], ∀e ∈ lab−1
R (N), labR(e)• ⇒k(e) σ(e),

and
∑

e∈lab−1
R (N) k(e) = k.

A hyperedge replacement grammar of order k (k-HR grammar) is a tuple
G = (C, N, S,R) where C = (Σ, type) is a signature, N ⊆ Σ is the set of non-
terminal labels, S ∈ N is the start symbol, and R is a finite set of rules over N ,
with max({type(r) | r ∈ R}) ≤ k. We call Σ \N the terminal labels and call G
repetition-free (proper, well-formed) if all its rules are repetition-free (proper,
well-formed). The language generated by G is L(G) = {H ∈ HC | S• ⇒∗R
H with lab−1

H (N) = ∅} ⊆ HC . L ⊆ HC is called a (repetition-free) hyperedge
replacement language of order k ((repetition-free) k-HR language) if there is a
(repetition-free) k-HR grammar such that L(G) = L. The class of (repetition-
free) HR languages is the union of all (repetition-free) k-HR languages for k ≥ 0.
Denote these HRk and HR (HRrf

k and HRrf). All such languages are closed
under hypergraph isomorphism and are homogeneous (all hypergraphs have the
same type). We define the type of a homogeneous language to be the type of
its members.

Theorem 2.12 (Repetition-Free HR Generational Power [9]). Given an HR
grammar G over C, one can effectively construct a repetition-free HR grammar
G′ with L(G′) = L(G) ∩Hrf

C .

Theorem 2.13 (HR Linear-Growth [20]). Given an infinite HR language L,
there exists an infinite sequence of hypergraphs in L, say H0, H1, H2, . . . and
constants c, d ∈ N with c + d ≥ 1, such that for all i ∈ N, |VHi+1

| = |VHi
| + c

and |EHi+1 | = |EHi |+ d.

Given a class of hypergraph languages F , signatures C = (Σ, type) and D,
and A ⊆ Σ, an F-substitution of hypergraphs on A is a function s : A→ P0(HD)
such that for each label X ∈ A, s(X) ∈ F and s(X) is of type type(X). When F
is the class of all finite languages of hypergraphs, we call s a finite substitution
of hypergraphs. When s is such that for each label X ∈ A, A• ∈ s(A), then we
call s nested. Given a hypergraph H over A with EH = {e1, . . . , en}, write s(H)
for the language {H ′ ∈ HD | ∃R1 ∈ s(labH(e1)), . . . ,∃Rn ∈ s(labH(en)), H ′ ∼=
H[e1/R1, . . . , en/Rn]}, and given a hypergraph language L over A, write s(L) for
the language

⋃
H∈L s(H). Call F substitution closed if for any F language over

A and F-substitution s of hypergraphs on A, s(L) ∈ F . Call F (nested) iterated
substitution closed if for any F language over A and (nested) F-substitution s
of hypergraphs on A,

⋃
n∈N s

n(L) ∈ F , where sn(L) = s(· · · s(L) · · ·).

10

Theorem 2.14 (HR Languages Substitution Closed [20]). For k ≥ 0, the k-HR
languages are substitution closed and nested iterated substitution closed.

The partial function STR : HC ⇀ Σ∗ sends string graphs to the strings
they represent, and is undefined elsewhere. A language L ⊆ HC is said to be a
string graph language if it only contains string graphs. Given an HR grammar
G that generates a string graph language, we write STR(L(G)) for the actual
string language it generates. A string language L ⊆ A∗ is called a (repetition-
free) hyperedge replacement string language of order k ((repetition-free) k-HRS
language) if there is a (repetition-free) k-HR grammar G such that G generates
a string graph language and STR(L(G)) = L\{ε}. The class of (repetition-free)
HRS languages is the union of all (repetition-free) k-HRS languages for k ≥ 2.
Denote these HRSk and HRS (HRSrf

k and HRSrf).

3. PHR Languages

In this section, we will formally define parallel hyperedge replacement and
parallel hyperedge replacement grammars, showing that they generalise hyper-
edge replacement. Our definitions are equivalent to those defined by Habel
in Chapter VIII.3 of [20]. After that, we investigate the effects of restricting
the maximum number of tables, show that rational control of traces does not
change generative power when the number of tables is not restricted, establish
some substitution closure results, and finally, show that the emptiness problem
for parallel hyperedge replacement grammars is decidable.

3.1. Definitions and Foundations

The most fundamental notion to us is that of a parallel direct derivation,
where every hyperedge is necessarily replaced. In order to ensure progress can
always be made, we are only interested in sets of rules that are tables:

Definition 3.1 (Table). Given C = (Σ, type), a table T over Σ is a finite set
of rules over Σ such that for each L ∈ Σ there is at least one R ∈ HC with
(L,R) ∈ T . Call T repetition-free (proper, well-formed) if all its rules are
repetition-free (proper, well-formed).

Definition 3.2 (Parallel Direct Derivation). Given C = (Σ, type), H ∈ HC
with EH = {e1, . . . en}, and T a table over Σ, if for each ei ∈ EH , there is a
Ri ∈ HC such that (labH(ei), Ri) ∈ T , then we say that H parallelly directly
derives H ′ ∼= H[e1/R1, . . . , en/Rn], and write H VT H ′.

Direct derivations enjoy a restriction property, and it is easy to see that
parallel direct derivations also enjoy this same property. Given hypergraphs G
and H, write G ⊆ H if there is an injective hypergraph morphism G→ H and
G v H is there is a hyperedge-injective hypergraph morphism G→ H.

Lemma 3.3 (PHR Derivation Restriction). Given C = (Σ, type), a table T over
Σ, and hypergraphs H,H ′ ∈ HC such that H VT H ′ and G v H, then there
is a hypergraph G′ ∈ HC such that G VT G′ and G′ v H ′. Moreover, if T is
repetition-free, we can replace both occurrences of v with ⊆.

11

An equivalent way to view a parallel direct derivation is the application of
a finite substitution of hypergraphs. To any table T over Σ, we can associate
a finite substitution of hypergraphs sT where sT (L) = {R | (L,R) ∈ T} for
each L ∈ Σ. Next, we define parallel derivations to be a sequence of parallel
direct derivations. Equivalently, we could view these as the application of a
composition of substitutions, like in Section 2.3.

Definition 3.4 (Parallel Derivation). Given C = (Σ, type), H,H ′ ∈ HC , and a
finite set of tables T = {Ti | i ∈ I} over Σ indexed by I, we say H parallelly
derives H ′ if there is a sequence H VTi1

H1 VTi2
· · ·VTik

Hk = H ′ or H ∼= H ′.

We write H Vi1i2···ik
T H ′, H Vk

T H ′, or H V∗T H ′. Call i1i2 · · · ik ∈ I∗ the
trace of the derivation, defined to be ε when H ∼= H ′.

Rather than replacing only non-terminals, as is usual in hyperedge replace-
ment grammars, we allow all hyperedges to be replaced, and have a special set
of terminal symbols to allow us to say when it is that a hypergraph is terminally
labelled, just like ET0L grammars. This decision is more than just a matter of
taste. Disallowing rewriting of terminal symbols can change generational power
of systems with parallel rewriting. For example, the E0L language {an2 | n ≥ 1}
would not be E0L if we disallowed rewriting of terminal symbols, however, it
would at least be ET0L without needing to re-write terminals to something
other than themselves. Combining this observation with Theorem 4.4 tells us
that PHR2,1 would be different if we were to disallow replacement of terminals.

Definition 3.5 (PHR Grammar). A parallel hyperedge replacement grammar
of order k using at most l tables is a tuple G = (C, A, S, T) where C = (Σ, type)
is a signature, A ⊆ Σ is the set of terminal labels, S ∈ Σ is the start symbol,
and T = {Ti | i ∈ I} is a non-empty, finite set of tables over Σ indexed by
I with max({type(r) | r ∈

⋃
Ti∈T Ti}) ≤ k and |T | ≤ l. Call Σ \ A the non-

terminal labels and call G repetition-free (proper, well-formed) if all its tables
are repetition-free (proper, well-formed). Also call G a (k, l)-PHR grammar,
k-PHR grammar, or PHR grammar. The language generated by G is L(G) =
{H ∈ HC | S• V∗T H with lab−1

H (A) = EH} ⊆ HC .

Definition 3.6 (PHR Language). L ⊆ HC is called a (repetition-free) parallel
hyperedge replacement language of order k using at most l tables if there is
a (repetition-free) (k, l)-PHR grammar G such that L(G) = L. The class of
(repetition-free) k-PHR languages is the union of all (repetition-free) (k, l)-PHR
languages for l ≥ 1, and the class of (repetition-free) PHR languages is the
union of all (repetition-free) k-PHR languages for k ≥ 0. Denote these PHRk,l,
PHRk, and PHR (PHRrf

k,l, PHRrf
k , and PHRrf).

Just like languages generated by hyperedge replacement, parallel hyperedge
replacement languages are closed under hypergraph isomorphism and are ho-
mogeneous in the sense that all hypergraphs in a language have the same type.

Our next theorem confirms that PHR languages strictly contain the HR
languages, as expected. We note that our statement is actually stronger than

12

Theorem VIII.3.3 of Habel’s book [20], which sketches a proof for only k ≥ 2,
and did not explicitly consider the number of tables required.

Theorem 3.7 (PHR Generalises HR). For all k ≥ 0, HRk (PHRk,1 and
HRrf

k (PHRrf
k,1.

Proof. Suppose C = (Σ, type) and G = (C, N, S,R) is a (repetition-free) k-
HR grammar with R = {r1, . . . , rn}. Then we construct a (repetition-free)
(k, 1)-PHR grammar G′ = (C, A, S, T) with A = Σ \ N and T = {T1} where
T1 = R ∪ {(X,X•) | X ∈ Σ}. Clearly every parallel direct derivation with
start hypergraph G can be decomposed into at most |EG| direct derivations
where if an edge is replaced by itself, we omit it, and if a genuine replacement
from R occurs, we use that. So, by induction on derivation length, we see
that every parallel derivation in G′ can actually be written as a derivation in
G. Similarly, every direct derivation in G can be lifted to a parallel derivation
in G′ by replacing all but one edge by itself. So, by induction on derivation
length, we see that every derivation in G can be written as a parallel derivation
in G′. Thus, together with the fact that the terminal symbols and start symbol
coincide, we have that L(G) = L(G′).

To see strictness, we are inspired by the fact that the string language {a2n |
n ∈ N} is E0L but not MCF (Theorem 2.10). We will show there is a repetition-
free (0, 1)-PHR language that is not k-HR for any k ≥ 0. Let G = (C, A, S, T)
be the repetition-free (0, 1)-PHR grammar with C = ({�}, {(�, 0)}), A = {�},
S = �, and T = {T1} where T1 = {(�,�• t �•)} (t denotes disjoint union
of hypergraphs). Clearly L(G) is the language of hypergraphs over C with 2n

hyperedges. By Theorem 2.13, L(G) is not a HR language, as required.

Corollary 3.8. PHR languages need not have only linear growth, in the sense
of Theorem 2.13.

Finishing this subsection, we remark that it is easy to see that proper PHR
languages can be generated by proper PHR grammars:

Lemma 3.9 (Constructing Proper PHR Grammars). For any k ≥ 0, l ≥ 1,
given a (repetition-free) (k, l)-PHR grammar G generating a proper language,
one can effectively construct a (repetition-free) proper (k, l)-PHR grammar G′
such that L(G) = L(G′).

Lemma 3.9 will be useful to us when we look at the string generational power
of PHR grammars in Section 4, since string graphs are proper hypergraphs.

3.2. Example PHR Languages

The proof of Theorem 3.7 tells us all HR languages are PHR languages,
and also provides us with an example repetition-free (0, 1)-PHR language which
is not HR. An example derivation in this grammar is shown in Figure 6. At
each stage, the type 0 hyperedges are simultaneously replaced by two such
hyperedges.

13

� V
�

�

V
�

�

�

�

V
�

�

�

�

�

�

�

�

Figure 6: Example parallel derivation

For our next example, recall that one can view rooted unlabelled trees as
directed graphs, with the root an external node. Such a tree is called a full
binary tree if each node has exactly zero or two children, and if a node has
no children, then all other nodes on the same level must also have no children.
We denote the language of all such hypergraphs FBT, using a type 2 symbol
� to label all the edges. It is easy to check that the repetition-free (2, 1)-PHR
grammar G = ((Σ, type), {�}, S, {T1}) where Σ = {S,X, Y, F,�}, type(S) = 1,
type(X) = type(Y) = type(F) = type(�) = 2, T1 = {r0, . . . , r7}, and the eight
rules are defined in Figure 7, generates FBT.

S → 1

(a) Rule r0

S →

1

X X

1 1

2 2

(b) Rule r1

X →

1

Y

2

X X

1

2

1 1

2 2

(c) Rule r2

X →

1

�

2

1

2

(d) Rule r3

Y →

1

Y

2

1

2

(e) Rule r4

Y →

1

�

2

1

2

(f) Rule r5

� →

1

F

2

1

2

(g) Rule r6

F →

1

F

2

1

2

(h) Rule r7

Figure 7: Full binary tree rules

The rule r6 is responsible for ensuring that whenever terminals are derived, if
any non-terminals remained, then the hypergraph can never reach a terminally
labelled state in the future, effectively controlling when we stop adding levels to
our tree. This trick with the terminals and the F label will re-appear in Subsec-
tion 3.5, when we discuss synchronisation. Figures 8 and 9 show positive and
negative derivations, by which we mean, derivations that lead to a terminally
labelled hypergraph, and derivations that are not a prefix of a derivation that
leads to a terminally labelled hypergraph, respectively.

Kreowski showed that his notion of PHR grammars could generate the lan-

14

1

S

1 V

1

X X

1 1

2 2

V

1

Y Y

X X X X

1 1

2 2

1 1

2 2

1 1

2 2

V

1

� �

� � � �

1 1

2 2

1 1

2 2

1 1

2 2

Figure 8: Example positive derivation

1

S

1 V

1

X X

1 1

2 2

V

1

Y �

X X

1 1

2 2

1 1

2 2

V

1

� F

� �

1 1

2 2

1 1

2 2

Figure 9: Example negative derivation

guage of Sierpinski triangles, using two tables [21]. We can improve upon this
result, showing that only one table is needed, constructing a repetition-free
(2, 1)-PHR grammar G generating the language of all directed �-labelled Sier-
pinski triangles. Let G = ((Σ, type), {�}, S, {T1}) where Σ = {S,X, F,�},
type(S) = type(X) = 3, type(F) = type(�) = 2, T1 = {r0, . . . , r5}, and the fix
rules are defined in Figure 10. Once again, our trick to avoiding a second table
is to have the terminal rewrite to F , so that derivations leading to a terminally
labelled output must write all the terminals at the same time. Rewriting of
terminals was not possible in Kreowski’s definition of PHR grammars, and we
believe this is precisely what prevented him from using only one table.

3.3. The Power of Tables

In this subsection, we show that for each k ≥ 0, we in general, have only two
possibly distinct classes: the (k, 1)-PHR languages and the k-PHR languages.
That is, the availability of three or more tables does not increase generative
power beyond what was possible with only two tables. This is exactly the same
situation one finds with E0L and ET0L languages.

Theorem 3.10 (PHR Table Power). For all k ≥ 0, PHRk,2 = PHRk and
PHRrf

k,2 = PHRrf
k . Moreover, given a (repetition-free) (proper) (k, l)-PHR

grammar G for any k ≥ 0, l ≥ 2, one can effectively construct a (repetition-free)
(proper) (k, 2)-PHR grammar G′ such that L(G) = L(G′).

15

S →

1

� �

3 � 2

1

2

12

1

2

(a) Rule r0

S →

1

X

3 2

1

23

(b) Rule r1

X →

1

X

X X

3 2

1

23

1 1

23 23

(c) Rule r2

X →

1

� �

3 � 2

1

2

12

1

2

(d) Rule r3

� →

1

F

2

1

2

(e) Rule r4

F →

1

F

2

1

2

(f) Rule r5

Figure 10: Sierpinski triangle rules

Proof. PHRk,2 ⊆ PHRk,l and PHRrf
k,2 ⊆ PHRrf

k,l by definition. To see the
reverse inclusions, we follow the proof of Theorem V.1.3 of [4] with modifications
lifting the proof from ET0L grammars to PHR grammars. We must show that
given some (k, l)-PHR grammar G = ((Σ, type), A, S, {T1,Tl}) with l ≥ 2,
we can construct a (k, 2)-PHR grammar G = ((Σ′, type′), A, S, {T ′1, T ′2}), with
L(G) = L(G′).

We setup the signature as follows. Let Σ′ = {[A, i] | A ∈ Σ, i ∈ l} ∪ Σ,
type′([A, i]) = type(A) for all A ∈ Σ, i ∈ l, and type′(A) = type(A) for all
A ∈ Σ. The first table, T ′1, contains exactly the rules (A, [A, 1]•) for all A ∈ Σ,
([A, i], [A, i+ 1]•) for all A ∈ Σ, i ∈ l − 1, and ([A, l], [A, 1]•) for all A ∈ Σ. The
second table, T ′2, contains exactly the rules (A,A•) for all A ∈ Σ and ([A, i], R)
for all i ∈ l, (A,R) ∈ Ti.

This construction means that the table T ′1 rewrites a hypergraph H ∈ HC
into the hypergraph H(1) resulting from H by replacing every label A by [A, 1],
then H(1) is rewritten to H(2) by replacing every [A, 1] by [A, 2], etc, with [A, l]
looping back round to [A, 1]. If at any moment, table T ′2 can be applied, it
rewrites H(i) to H ′ if and only if H VTi H

′ where H is H(i) with each [A, i]
replaced by A. One should also note that the typing function type′ is set up to
be compatible with all these replacements, so all our rules are well-typed.

By repeating the above process, we can see all derivations in G are simulated
by G′, so L(G) ⊆ L(G′), since the terminal labels and start states are the same.
The reverse inclusion is obvious, so we have L(G) = L(G′), as required.

Finally, it is easy to see that all of our transformations preserved if the
grammar was repetition-free or proper.

16

3.4. Rational Control of Traces

It is often convenient to restrict the sequences of allowed traces when defining
a language using a PHR grammar, leading to better readability of grammars
and possibly shorter proofs. A popular choice in L systems is so-called rational
control, and was considered for ET0L in 1975 by Nielsen [34] and later by Asveld
[35]. We will make precise a notion of rational control for PHR grammars, and
show that generational power actually remains the same whenever we have at
least two tables, because we can always encode the rational control.

Definition 3.11 (Controlled Parallel Derivation). Given C = (Σ, type), H,H ′ ∈
HC , a finite set of tables T = {Ti | i ∈ I} over Σ indexed by I, and M an FSA
over I, we say H (M-)parallelly derives H ′ if H parallelly derives H ′ with trace
i1i2 · · · ik ∈ L(M). We write H Vi1i2···ik

T H ′, H Vk
T H

′, or H VMT H ′.

Definition 3.12 (PHR Grammar with Control). A (repetition-free) parallel
hyperedge replacement grammar with control of order k using at most l tables
is a tuple G = (C, A, S, T ,M) where (C, A, S, T) is a (repetition-free) (k, l)-
PHR grammar (called the underlying grammar) with T indexed by I, and M
is an FSA over I (called the rational control). The language generated by G is
L(G) = {H ∈ HC | S• VMT H with lab−1

H (A) = EH} ⊆ HC .

Theorem 3.13 (PHR Grammar Control Removal). Given a (repetition-free)
k-PHR grammar with control G, one can effectively construct a (repetition-free)
k-PHR grammar G′ such that L(G) = L(G′).

Proof. Let G = ((Σ, type), A, S, {T1, . . . Tl},M). Without loss of generality, we
can assume that M = (Q,n, δ, i, F)) is deterministic and full, and Q ∩ Σ = ∅.

We construct the (repetition-free) k-PHR grammar G′ = ((Σ′, type′), A, S′,
T ′). First, make a disjoint (from Σ1) copy of A, A, and to each X ∈ A,
associate a unique X ∈ A. Moreover, given a hypergraph H, denote by H the
same hypergraph but with its labelling function composed with the function
that sends X ∈ A to X and leaves everything else in place. Next, choose
some additional fresh symbols: S′, F0, . . . , Fk. Using these, we define Σ′ =
{S′} ∪ Q ∪ Σ ∪ A ∪ {F0, . . . , Fl} where type(S′) = type(S), type(q) = 0 for all
q ∈ Q, type′(X) = type(X) for all X ∈ Σ, type′(X) = type(X) for all X ∈ A,
and type′(Fj) = j for all j ∈ k.

Finally, let T ′ = {T ′0, T ′1, . . . T ′l } where T ′0 = {(S′, S• t i•)} ∪ {(q, ∅) | q ∈
F}∪{(X,X•) | X ∈ A}∪{(X,Ftype′(X)) | X ∈ (Q \F)∪Σ∪{F0, . . . , Fk}} and

for each j ∈ l, T ′j = {(L,R) | (L,R) ∈ Tj ∧L ∈ A} ∪ {(L,R) | (L,R) ∈ Tj ∧L 6∈
A} ∪ {(q, δ(q, j)•) | q ∈ Q} ∪ {(X,X•) | X ∈ {S′} ∪A ∪ {F0, . . . Fk}}.

We can see that the purpose of table 0 is to start and stop the derivation
process, with the rest of the tables simulating the original system, while also sim-
ulating the automaton. So, if S• Vw

T H is a derivation in G with H terminally
labelled and w ∈ L(M), then there is a corresponding derivation S′• V0w0

T H in
G′. That is L(G) ⊆ L(G′). To see the reverse inclusion, we analyse all derivations
of the form S′• Vw

T H. If w does not contain 0 at least twice, then H is necessar-
ily not terminally labelled. So, useful derivations must have trace x0y0z where

17

x, y ∈ {1, . . . l}∗, z ∈ {0, . . . l}∗. Clearly if S′• Vx
T H

′, then H ′ ∼= S′•, so we can

assume x = ε. Similarly, if S′• V0y0
T H ′ and H ′ Vz

T H, then either H ′ ∼= H
if H was terminally labelled, and so we could assume z = ε, or H ′ is labelled
by at least non-terminal which has no terminally labelled successor hypergraph,
and so it doesn’t matter what H is. Finally, we analyse y. If y ∈ L(M), then
we proceed as in the analysis of the other direction of inclusion. If y 6∈ L(M),
then the final step sends the type zero symbol tracking the machine state to F0

which forces all successors of the hypergraph to be not terminally labelled.

Thus, the hypergraph languages that can be generated by (repetition-free)
k-PHR grammars are exactly those that can be generated by (repetition-free)
k-PHR grammars with control, since certainly no control can be simulated. It
is unclear if this also holds for (k, 1)-PHR grammars, but we conjecture that it
does not.

3.5. Synchronisation and Substitution Closure

Recall from Subsection 2.3 that an extremely useful notion in L systems is
that of a synchronised system. We will now define this notion of PHR grammars,
and show that all PHR grammars can be synchronised. This will allow us to
show some substitution closure results for various relevant classes of hypergraph
languages and hypergraph substitutions.

Definition 3.14 (Synchronised PHR Grammar). Call a PHR grammar (C, A,
S, T) synchronised if for all hypergraphs H,H ′ over A, there cannot exist a
direct derivation H VT H ′, for any table T ∈ T . Moreover, call a symbol
X ∈ Σ, Y -final if every rule in any table in T of the form (X,R) is such that
R ∼= Y •. We call an X-final symbol X, final.

The following result shows that grammars can be synchronised (just like
ET0L grammars), and that without loss of generality, we can assume the start
symbol essentially does not appear in the RHS of any rules (just like context-free
grammars).

Lemma 3.15 (Synchronisation of PHR Grammars). Given a (repetition-free)
(proper) (k, l)-PHR grammar G = ((Σ, type), A, S, {T1, . . . Tl})), one can effec-
tively construct a synchronised (repetition-free) (proper) (k, l)-PHR grammar
G′ = ((Σ′, type′), A, S′, T ′)) with Σ ⊆ Σ′ and fresh symbols S′, F0, . . . , Fk ⊆
Σ′ \ Σ such that:

1. type′|Σ = type and L(G) = L(G′);
2. S′ is such that ∀T ∈ T ′,∀(L,R) ∈ T, S′ 6∈ labR(ER);

3. ∀i ∈ k, type(Fi) = i and each Fi is Fi-final;

4. each X ∈ A is Ftype(X)-final.

Proof. We will construct G′ in multiple phases, each preserving the properties
established by the phases prior. Property (1) is already satisfied by G. It is
easy to see that properties (3) and (4) imply that the grammar is synchronised,

18

since any terminally labelled hypergraph is immediately sent to one labelled by
only the Fis, and cannot escape.

We first construct the grammar G0 = ((Σ0, type0), A, S′, T0). We have Σ0 =
Σ ∪ {S′} where S′ is some fresh label, type0(X) = type(X) for all X ∈ Σ,
and type0(S′) = type(S). Finally, set T0 = {T01, . . . T0l} where each T0i =
Ti ∪ {(S′, S•)}. Clearly G0 now additionally satisfies property (2).

Next, we construct the grammar G1 = ((Σ1, type1), A, S′, T1). We have
Σ1 = Σ0 ∪ {F0, . . . Fl} where the Fi are fresh labels, type1(X) = type0(X) for
all X ∈ Σ0, and type1(Fi) = i for all 0 ≤ i ≤ l. Finally, set T1 = {T11, . . . T1l}
where each T1i = T0i ∪ {(Fj , Fj

•) | 0 ≤ j ≤ l}. Clearly G1 now additionally
satisfies property (3).

Next, we construct the grammar G′ = ((Σ′, type′), A, S′, T ′). First, make a
disjoint (from Σ1) copy of A, A and to each X ∈ A, associate a unique X ∈ A.
Moreover, given a hypergraph H, denote by H the same hypergraph but with its
labelling function composed with the function that sends X ∈ A to X and leaves
everything else in place. Now, set Σ′ = Σ1∪A, type′(X) = type1(X) for all X ∈
Σ1, and type′(X) = type1(X) for all X ∈ A. Finally, set T ′ = {T ′1, . . . T ′l } where
each T ′i = {(X,Ftype′(X)

•), (X,X•) | X ∈ A} ∪ {(L,R) | (L,R) ∈ T1i ∧ L ∈ A}
∪ {(L,R) | (L,R) ∈ T1i ∧ L ∈ Σ1 \ A}. Clearly G′ now additionally satisfies
property (4).

Habel observed that every PHR language can be embedded in an HR lan-
guage [20]. Using synchronisation, we can quickly establish this result:

Corollary 3.16 (PHR Embedding in HR). Every (repetition-free) (proper) k-
PHR language can be embedded in a (repetition-free) (proper) k-HR language,
for any k ≥ 0. Moreover, given a (repetition-free) (proper) k-PHR grammar G,
we can effectively construct a (repetition-free) (proper) k-HR grammar G′ such
that L(G) ⊆ L(G′).

Proof. Lemma 3.15 tells us how to construct a k-PHR grammar G0 = ((Σ, type),
A, S, {T1, . . . , Tl}) satisfying the conditions of the lemma with L(G0) = L(G). We
now construct the k-HR grammar G′ = ((Σ, type), N, S,R) where N = Σ \ A
and R = {(L,R) | (L,R) ∈

⋃
T ∧ L 6∈ A}. Clearly G′ is well-defined and

L(G) ⊆ L(G′) via decomposition of parallel derivations.

We can also use synchronisation to show that PHR languages are substitu-
tion closed, a property also enjoyed by HR languages (Theorem 2.14). Specif-
ically, we show that a k-HR language under a (k, 1)-PHR substitution is a
(k, 1)-PHR language, a (k, 1)-PHR language under a finite substitution is a
(k, 1)-PHR language, and that a k-PHR language under a k-PHR substitution
is a k-PHR language. Our proof is constructive, starting with grammars, and
constructing a grammar generating the image under the substitution. Finally,
we also note that being proper, a graph language, or a string graph language is
preserved under substitutions that send terminals to languages also satisfying
these properties. We will later use our result in Theorem 4.7.

19

Theorem 3.17 (PHR Languages Substitution Closed). Given C = (Σ, type)
and A ⊆ Σ:

1. for any k ≥ 0, if L is a k-HR language over A and s is a PHRk,1-
substitution of hypergraphs on A, then s(L) is a (k, 1)-PHR language;

2. for any k ≥ 0, if L is a (k, 1)-PHR language over A and s is a finite
substitution of hypergraphs on A, then s(L) is a (k, 1)-PHR language;

3. for any k ≥ 0, if L is a k-PHR language over A, and s is a PHRk-
substitution of hypergraphs on A, then s(L) is a k-PHR language.

Moreover, if P is the property of being repetition-free, proper, a graph lan-
guage, or a string graph language, if L is P and s(X) is P for each X ∈ A, then
s(L) is P.

Proof. Let A = {X1, . . . Xm} and B =
⋃

H∈s(A) labH(EH) throughout this

proof, and without loss of generality, we can assume A ∩ B = ∅, by simply
renaming items in A and adjusting s accordingly.

To see (1), there must exist (k, 1)-PHR grammars Gi = ((Σi, typei), B, Si,
{Ti}) such that L(Gi) = s(Xi) for all i ∈ m, each Gi satisfies the conditions
Lemma 3.15, the final symbols F0, . . . , Fk are shared between the grammars, and
the remaining non-terminals are disjoint (for all i 6= j ∈ m, (Σi \({F0, . . . , Fk}∪
Ai)) ∩ Σj \ ({F0, . . . , Fk} ∪ Aj)) = ∅). There must also exist a k-HR grammar
G = (C, N, S,R) such that L(G) = L, Σ \N = A, and N ∩ (

⋃
i∈k Σi) = ∅.

We now use the proof of Theorem 3.7 to construct a (k, 1)-PHR grammar
G0 = (C, A, S, {T}) such that L(G0) = L(G) = L. Recall this construction set
T = R ∪ {(X,X•) | X ∈ Σ}. We now construct a new (k, 1)-PHR grammar
G′ = ((Σ′, type′), B, S, {T ′}). Set Σ′ = Σ∪Σ1 ∪ · · · ∪Σm and the type function
accordingly. Set T ′ = T ∪ {(Xi, Si) | 1 ≤ i ≤ m} ∪ {(Fi, Fi

•) | 0 ≤ i ≤
k}∪{(X,Ftype′(X)

•) | X ∈ B}∪
⋃

i∈m{(L,R) ∈ Ti | L ∈ Σ\ (B∪{F0, . . . , Fk})}
where the T1, . . . , Tm are the single tables from the G1, . . . ,Gm, respectively. It
is now easy to see that derivations in our new grammar simulate derivations
in G, and then arbitrarily re-write terminals (in A) to the start symbol of the
grammar generating the language that terminal is to be substituted for. Note
that because the rule (X,X•) is in the table for all X ∈ A, each derivation step
need not immediately re-write a terminal to the start symbol for the associated
grammar. The effect of this is that when these grammars are then simulated,
they need not run for the same number of steps as each other. It is now clear
that L(G′) = s(L(G)) = s(L), as required.

To see (2), let G = (C, A, S, {T}) be a (k, 1)-PHR grammar generating L.
Without loss of generality, we can assume it satisfies the conditions of Lemma
3.15 with final symbols F0, . . . , Fk.

We now construct a new (k, 1)-PHR grammar G′ = ((Σ′, type′), B, S, {T ′})
where Σ′ = Σ ∪B and the typing function is defined in the obvious way. Next,
we define the finite substitution s′ on Σ by s′(X) = s(X) for all X ∈ A and
s′(X) = {X•} for all X ∈ Σ \ A. Finally, let T ′ = (

⋃
{{(L,H) | H ∈ s′(R)} |

(L,R) ∈ T ∧ L ∈ Σ \ A}) ∪ {(X,Ftype′(X)) | X ∈ B}. It is now clear that this
new grammar simulates the original, only with all terminals in RHS replaced

20

with all combinations of their replacements under s, and the synchronisation
properties are preserved.

To see (3), there must exist k-PHR grammars Gi = ((Σi, typei), B, Si, Ti)
such that L(Gi) = s(Xi) for all i ∈ m, each Gi satisfies the conditions Lemma
3.15, the final symbols F0, . . . , Fk are shared between the grammars, and the
remaining non-terminals are disjoint (for all i 6= j ∈ m, (Σi \ ({F0, . . . , Fk} ∪
B)) ∩ Σj \ ({F0, . . . , Fk} ∪Aj)) = ∅). There must also exist a k-PHR grammar
G = (C, A, S, T) such that L(G) = L, and Σ∩ (

⋃
i∈k Σi) = ∅. For each i ∈ m, let

Σi be a copy of Σi consisting of fresh symbols, and identify each X ∈ Σi with
its copy X ∈ Σi. Moreover, given a hypergraph H, by H we mean H but with
its labelled function composed with the function which takes any X ∈ Σi to X
and leaves everything else fixed.

We now construct the k-PHR grammar G′ = (C′, B, T ′, S) such that L(G′)
= S(L). Let C′ = (Σ′, type′) be the union of all the above signatures also
including the disjoint copies, where copies are of the same type as their original
symbols. Finally, let R = {(X,X•) | X ∈ Σ′}, F = {(X,F •type′(X)) | X ∈ Σ′},
and T ′ =

⋃
0≤i≤m T ′i , where T ′0 = {R⊕T | T ∈ T }∪{F ⊕{(Xi, Si

•) | i ∈ m}},
and for each i ∈ m let Ti = {R ⊕ ({(L,R) | (L,R) ∈ T} ∪ {(Si, Si

•)}) | T ∈
Ti} ∪ {R ⊕ ({(X,X•) | X ∈ B} ∪ {(X,F •type′(X)) | X ∈ Σi \ (B ∪ {Si})})}.

One can see that derivations that make progress start with S• then apply
tables from the first part of T ′0 , simulating G. At some point, the final table
of T ′0 may be applied, which immediately rewrites all the terminals to encoded
start symbols for their respective grammars for substitution and sends all non-
terminals to failure non-terminals. If a hypergraph contains any failure non-
terminals at this point, non terminally labelled hypergraph can be derived in
future. Derivations can now simulate the Gi totally independently, with choice
of delaying start, giving total freedom over the simulated derivation sequences
for each instance of the encoded start symbol. Finally, the encoded systems
can end their simulation at any point, just like before, by sending their encoded
terminals to real terminals in B and their encoded non-terminals to failure non-
terminals. It is now clear that L(G′) = s(L), as required.

Finally, preservation of the property of being repetition-free, proper, a graph
language, or a string graph language is easy to see.

In light of the above result, we can view the language FBT from Subsection
3.2 as the image of the repetition-free (2, 1)-PHR grammar (({S,X, Y }, 〈S 7→
1, X 7→ 2, Y 7→ 2〉), {X,Y }, S, {{r0, r1, r2, r3}}) under the repetition-free finite
substitution of hypergraphs h(X) = h(Y) = �•, where the ri are defined in
Figure 11. Moreover, we can generate the language of full binary trees over
an arbitrary label set {X1, . . . Xm} using the substitution h(X) = h(Y) =
{X•1 , . . . X•m}. A similar trick is also possible with the grammar that gener-
ated the language of all directed Sierpinski triangles.

Finally, we can generalise Theorem 2.9 for PHR languages:

Theorem 3.18 (PHR Languages Hyper-Algebraically Closed). Given C =
(Σ, type), A ⊆ Σ, and k ≥ 0, if L is a k-PHR language over A, and S is a finite set

21

S → 1

(a) Rule r0

S →

1

X X

1 1

2 2

(b) Rule r1

X →

1

Y

2

X X

1

2

1 1

2 2

(c) Rule r2

Y →

1

Y

2

1

2

(d) Rule r3

Figure 11: Full binary tree rules revisited

of PHRk-substitutions of hypergraphs on A, then L′ =
⋃

n∈N{sn(· · · s1(L) · · ·) |
s1, . . . , sn ∈ S} is a k-PHR language. Moreover, if P is the property of being
repetition-free, proper, a graph language, or a string graph language, if L is P
and s(X) is P for each s ∈ S and X ∈ A, then L′ is P.

Proof. The proof is very similar to that of part (3) of Theorem 3.17. The only
difference is the addition of another table which can be used to send all terminals
to restart the process and all non-terminals to a failure symbol.

Corollary 3.19 (PHR Languages Iterated Substitution Closed). For all k ≥ 0,
PHRk (PHRrf

k) is iterated substitution closed.

3.6. The Emptiness Problem

An important and useful decision problem is the emptiness problem. That
is, given a PHR grammar, decide if it generates a non-empty language or not. In
this subsection, we show this problem is decidable, in general. This result also
has utility when eliminating unreachable symbols from PHR grammars, which
we tackle at the end of this subsection, but also for providing us with an explicit
algorithm for solving the membership problem for PHRS languages (Subsection
4.4).

Before we present and prove Theorem 3.25, we first must define label sets,
and derivations on label sets. Soundless and completeness of simulation of PHR
derivations by label set derivations, together with the fact that analysis of label
sets is easy, enables us to show how to decide emptiness for PHR grammars.

Definition 3.20 (Label Set). Given some signature C = (Σ, type) let LC =
P(Σ) and labels : HC → LC be the function defined by H 7→ labH(EH). Call
X ∈ LC a label set and define the hypergraph:

H(X) =
⊔

A∈X
untype(A•)

where untype(H) is H with extH replaced by ∅.

22

Definition 3.21 (Direct Derivation). If X,X ′ ∈ LC and T is a table over C,
then write X VT X ′ whenever ∃H ′ ∈ HC , H(X)VT H ′ ∧ labels(H ′) = X ′.

The following three lemmata are easy to see:

Lemma 3.22 (Restriction of Label Set Direct Derivations). Given C and a
table T over C, then ∀X,Y, Y ′ ∈ LC :

(Y VT Y ′ ∧X ⊆ Y)⇒ (∃X ′ ∈ LC , X VT X ′ ∧X ′ ⊆ Y ′).

Lemma 3.23 (Completeness of Label Set Direct Derivations). Given C, and a
table T over C, then ∀H,H ′ ∈ HC :

(H VT H ′)⇒ (∃X ′ ∈ LC , labels(H)VT X ′ ∧X ′ ⊆ labels(H ′)).

Lemma 3.24 (Soundness of Label Set Direct Derivations). Given C and a table
T over C, then ∀X,X ′ ∈ LC ,∀H ∈ HC :

(X VT X ′ ∧ labels(H) = X)⇒ (∃H ′ ∈ HC , H VT H ′ ∧X ′ = labels(H ′)).

Theorem 3.25 (Decidable PHR Emptiness Problem). The following problem
is decidable, with an explicit algorithm:

Instance: A PHR grammar G = (C, A, S, T).
Question: Is L(G) = ∅?

Proof. Write X V+
T X ′ if there exists a sequence of direct derivations X VT1

X1 VT2 · · ·VTn X
′ with n ≥ 1, Ti ∈ T , X,X ′, Xi ∈ LC , and define succT (X) =

{X ′ ∈ LC | X V+
T X ′}, computed by iteratively computing label set direct

successors (breadth first search). Eventually this process must terminate due
to the fact that LC is finite. We claim that succT ({S}) contains a label set
containing only terminals if and only if L(G) 6= ∅.

Suppose first that L(G) is non-empty. Then there must be a hypergraph
derivation sequence S• VT1 H1 VT2 · · · VTn Hn with n ≥ 1 and labH(EH) ⊆
A, which, by Lemmata 3.22 and 3.23, induces the corresponding label set deriva-
tion sequence {S} VT1

X1 VT2
· · · VTn

Xn such that Xn ⊆ labels(Hn) ⊆ A
and Xn ∈ succT (X), as per Figure 12(a).

Now suppose that there is a label set containing only terminals in succT (S•).
Then there must be a label set derivation sequence {S} VT1 X1 VT2 · · · VTn

Xn with n ≥ 1 and Xn ⊆ A. By Lemma 3.24, there must be a corresponding
derivation sequence S• VT1

H1 VT2
· · · VTn

Hn, as per Figure 12(b). Since
labels(Hn) = Xn ⊆ A, we know Hn ∈ L(G) so L(G) is non-empty.

Finally, the above view of derivations informs us of how to eliminate un-
reachable labels from a PHR grammar. Elimination of unreachable symbols
will be needed later in the proof of Theorem 4.4.

Definition 3.26 (Unreachable Symbol). Given a PHR grammar over (Σ, type),
X ∈ Σ is called unreachable if there is no derivation starting at S• containing
a hypergraph with a hyperedge labelled by X.

23

S• H1 H2 H3 Hn

{S} labels(H1) labels(H2) labels(H3) labels(Hn)

⊆ ⊆ ⊆ ⊆

X1 X1
2 X2

3 Xn−1
n

⊆ ⊆ ⊆
··
·

X2 X1
3

⊆

X3

··
·

⊆

X1
n

⊆

Xn

labels labels labels labels labels

≡≡≡≡≡≡≡≡VT1
≡≡≡≡≡≡≡≡VT2

≡≡≡≡≡≡≡≡VT3
≡ · · · · · · ≡≡VTn

≡≡≡≡≡≡≡≡≡V
T
1 ≡≡≡≡≡≡≡≡≡V

T
2 ≡≡≡≡≡≡≡≡≡V

T
3 ≡ · · ·

· · · ≡≡≡≡V
T
n

≡≡≡≡≡≡≡V
T
2 ≡≡≡≡≡≡≡≡≡V

T
3 ≡ · · ·

· · · ≡≡≡≡V
T
n

≡≡≡≡≡≡≡V
T
3 ≡ · · ·

≡ · · ·
· · · ≡≡≡≡V

T
n

(a) First part

{S} X1 X2 X3 Xn

S• H1 H2 H3 Hn

labels labels labels labels labels

≡≡VT1
≡≡≡VT2

≡≡≡VT3
≡ · · · · · · ≡≡VTn

≡≡VT1
≡≡≡VT2

≡≡≡VT3
≡ · · · · · · ≡≡VTn

(b) Second part

Figure 12: Diagrams for proof of Theorem 3.25

Lemma 3.27 (Elimination of Unreachable Labels). For k ≥ 2, l ≥ 1, given a
(repetition-free) (proper) (k, l)-PHR grammar G, one can effectively construct a
(repetition-free) (proper) (k, l)-PHR grammar G′ with no unreachable symbols
and L(G) = L(G′).

Proof. Similar to the proof of Theorem 3.25, if a symbol appears in a hyper-
graph derivation sequence starting at S•, then it appears in a label set derivation
sequence starting at {S}, and vice versa. So determining if a symbol is unreach-
able is just a finite process.

Removal of an unreachable symbol from a grammar is an easy process. Sup-
pose that we have identified X ∈ Σ as an unreachable symbol in the PHR gram-
mar G = ((Σ, type), A, S, T). Then the grammar G′ = ((Σ\{X}, type|Σ\{X}), A\
{X}, S, {{(L,R) | (L,R) ∈ T∧L 6= X∧X 6∈ labR(ER)} | T ∈ T }) no longer con-
tains the symbol X and is such that L(G) = L(G′). We can repeat this process to
remove all unreachable symbols. It is easy to see that after we have completed
this process, the resultant grammar will have no unreachable symbols.

24

4. PHRS Languages

We now turn our attention to string languages. We believe the family of
parallel hyperedge replacement string languages is a genuinely new family, con-
taining all MCF and ET0L languages. It is not simply equal to the (parallel)
MCF languages because these are known to be incomparable with ET0L [32].
Recall that the hyperedge replacement string languages are exactly the MCF
languages. We will confirm that parallel hyperedge replacement string (PHRS)
languages contain all MCF languages and also all of the ET0L languages. We
then go on to show various closure properties including that the family of PHRS
languages is a hyper-algebraically closed super AFL with decidable membership.

4.1. Definitions and Foundations

Definition 4.1 (PHR String Language). A string language L ⊆ A∗ is called a
(repetition-free) parallel hyperedge replacement string language of order k with
at most l tables if there is a (repetition-free) (k, l)-PHR grammar G such that
G generates a string graph language and STR(L(G)) = L \ {ε}. The family of
(repetition-free) k-PHRS languages is the union of all (repetition-free) (k, l)-
PHRS languages for l ≥ 1, and the family of (repetition-free) PHRS languages
is the union of all (repetition-free) k-PHRS languages for k ≥ 2. Denote these
PHRSk,l, PHRSk, and PHRS (PHRSrf

k,l, PHRSrf
k , and PHRSrf).

Notice how we exclude the cases where k < 2, l < 1. This is to ensure the
classes form a family of string languages, as per the definition in Subsection 2.1,
since PHRSrf

0 = PHRS0 = PHRSrf
1 = PHRS1 = {∅, {ε}}. Notice also that

PHRSrf
k,l ⊆ PHRSk,l for k ≥ 2, l ≥ 1, and Theorem 3.10 tells us:

Theorem 4.2 (PHRS Table Power). For all k ≥ 2, PHRSrf
k,2 = PHRSrf

k and
PHRSk,2 = PHRSk.

We now show that the PHRS languages generalise both the ET0L and MCF
languages. In particular, the (2, 1)-PHRS languages are exactly the E0L lan-
guages, and the 2-PHR languages, ET0L.

Lemma 4.3. Given a (k, l)-PHR grammar G generating a string graph lan-
guage, one can effectively construct a proper (k, l)-PHR grammar G′ such that
there are no unreachable symbols, all terminals are type 2, all non-terminals are
type at least 2, and L(G) = L(G′).

Proof. Since all string graph languages are proper, Lemmata 3.9 and 3.27 tell
us how to construct a proper (k, l)-PHR grammar G′ such that there are no
unreachable symbols and L(G) = L(G′). All terminals can be assumed to be
type 2 since the grammar generates a string graph language. Finally, all type
0 non-terminals can be converted to type 1, since the start symbol must be of
type 2, so there will always be a node they can attached to. Next all type 1
non-terminals, including those we just converted from type 0, can be converted
to type 2 symbols in the obvious way, and all rules that use them updated so
that the extra node is merged upon deletion of the symbol.

25

Theorem 4.4 (PHRS Generalises ET0L). For all k ≥ 2, EOL ⊆ PHRSrf
k,1 and

ET OL ⊆ PHRSrf
k . When k ≥ 4, EOL (PHRSrf

k,1 and ET OL (PHRSrf
k .

Moreover, EOL = PHRSrf
2,1 = PHRS2,1 and ET OL = PHRSrf

2 = PHRS2.

Proof. First we show EOL = PHRSrf
2,1 and ET OL ⊆ PHRSrf

k for all k ≥
2. Suppose L is an E(T)0L language, then by Theorem 2.7 there exists a
propagating ET0L grammar G = (Σ, A, S, {Ti | i ∈ I}) such that L \ {ε} =
L(G). It follows that every rule can be encoded as a hyperedge replacement
rule over C′ = (Σ,Σ × {2}) giving us a repetition-free 2-PHR grammar G′ =
(C′, A, S, {{(L,R•) | (L,R) ∈ Ti} | i ∈ I}) with L(G) = STR(L(G′)).

Next, we show that PHRS2,1 ⊆ EOL and PHRS2 ⊆ ET OL. Suppose L is
a (2, l)-PHRS language, then there is a (2, l)-PHR grammar G = (C, A, S, {Ti |
i ∈ I}) generating a string graph language such that L \ {ε} = STR(L(G)).
Lemma 4.3 allows us to assume a lot about the form of RHSs of rules. It is easy
to see that all RHSs must actually be string graphs, or could be transformed
to string graphs, since any non-conformant pieces can just be inlined into the
string graph because it will ultimately be deleted and the nodes merged in any
terminally labelled derived hypergraph. Thus, the system can be converted into
an ET0L grammar using at most l tables.

Thus, we have PHRS2,1 ⊆ EOL ⊆ PHRSrf
2,1 and PHRSrf

2,1 ⊆ PHRS2,1, so
all these inclusions must be equalities. Similarly, we have PHRS2,l ⊆ ET OL ⊆
PHRSrf

2,l and PHRSrf
2,l ⊆ PHRS2,l, so all these inclusions must be equalities.

Finally, strictness follows from Theorems 2.2, 2.10, and 3.7. That is, we can
construct a repetition-free (4, 1)-PHR grammar G′ generating a string graph
language with STR(L(G′)) = K\{ε} (from Theorem 2.10) which is not E0L.

Corollary 4.5. There are repetition-free (2, 1)-PHRS languages that are not
semilinear.

Proof. Theorem 2.10 tells us L = {a2n | n ∈ N} is an E0L language which is not
semilinear. Theorem 4.4 tells us L is a repetition-free (2, 1)-PHRS language.

Theorem 4.6 (PHRS Generalises MCF). For all k ≥ 2, HRSrf
k (PHRSrf

k .

Proof. This follows from Theorem 2.2, and Theorem 3.7 and its proof. We get
strictness from Theorem 2.10 together with Theorem 4.4.

4.2. Formal Language Closure Properties

In this subsection, we show that the family of PHRS languages is a hyper-
algebraically closed super AFL, and that the family of repetition-free PHRS
languages is closed under non-erasing (iterated) substitution, with closure under
rational operations and non-erasing homomorphisms following from this as a
corollary.

Theorem 4.7 (PHRS Closed Under Substitutions). Let L ⊆ A∗. Then:

1. for any k ≥ 2, if L is a k-HRS language and h is a PHRSk,1-substitution
(non-erasing PHRSrf

k,1-substitution) on A, then h(L) is a (k, 1)-PHRS
language (rep.-free (k, 1)-PHRS language);

26

2. for any k ≥ 2, if L is a (k, 1)-PHRS language (rep.-free (k, 1)-PHRS lan-
guage) and h is a finite substitution (non-erasing finite substitution) on
A, then h(L) is a (k, 1)-PHRS language (rep.-free (k, 1)-PHRS language);

3. for any k ≥ 2, if L is a k-PHRS language (rep.-free k-PHRS language)
and h is a PHRSk-substitution (non-erasing PHRSrf

k -substitution) on A,
then h(L) is a k-PHRS language (rep.-free k-PHRS language).

Proof. First, recall that all k-HRS languages can be generated by repetition-free
k-HRS grammars by Theorem 2.2. Now, for all k ≥ 2, l ≥ 1, all (repetition-free)
PHRSk,l-substitutions h of strings on A can be converted to (repetition-free)
PHRk,l-substitutions s of hypergraphs on A viewing A as part of the signature
(A, type) where type(X) = 2 for all X ∈ A, defining s(X) = {w• | w ∈ h(X)}
for all X ∈ A. The rest then follows from Theorem 3.17, translating back from
string graphs to strings.

Corollary 4.8 (PHRS Closed Under Homomorphisms). Let L ⊆ A∗ be a (k, l)-
PHRS language (repetition-free (k, l)-PHRS language) for any k ≥ 2, l ≥ 1 and
ϕ : A∗ → B∗ be a homomorphism (non-erasing homomorphism). Then ϕ(L) is
a (k, l)-PHRS language (repetition-free (k, l)-PHRS language).

Proof. If l = 1, then we can use Theorem 4.7(2) since a (non-erasing) homo-
morphism can be trivially viewed as a (non-erasing) finite substitution. If l ≥ 2,
then we can similarly use Theorem 4.7(3).

Theorem 4.9 (PHRS Hyper-Algebraically Closed). Let L ⊆ A∗. Then, for
any k ≥ 2, if L is a k-PHRS language (repetition-free k-PHRS language) and H
is a finite set of PHRSk-substitutions (non-erasing PHRSrf

k -substitutions) on
A, then ITERH(L) is a k-PHRS language (repetition-free k-PHRS language).

Proof. This follows directly from Theorem 3.18, realising substitutions as in the
proof of Theorem 4.7.

Next, we show closure under rational operations, which can be seen via the
following general result:

Lemma 4.10. Let F be a family of string languages such that if L ⊆ A∗ is
regular and h is a non-erasing F-substitution on A, then h(L) ∈ F . Then for
F languages L1, L2 ⊆ A∗:

1. L1 ∪ L2 is an F language; (closure under union)

2. L1L2 is an F language; (closure under concatenation)

3. L+
1 is an F language. (closure under Kleene plus)

Proof. To see (1), notice that L1 ∪ L2 is simply h(K) where K = if ε ∈ L1 ∪
L2 then {X,Y, ε} else {X,Y }, and h is a non-erasing F-substitution defined by
h(X) = L1 \{ε} and h(Y) = L2 \{ε}. Thus we have L1∪L2 = h(K), and since,
in either case, K is a regular language, h(K) ∈ F due to our assumptions about
F , as required.

27

To see (2), we again construct a regular language K. If ε ∈ X and ε ∈ Y ,
then set K = {XY,X, Y, ε}. If only ε ∈ X, set K = {XY, Y }. If only ε ∈ Y ,
set K = {XY,X}. Otherwise, set K = {XY }. Finally, h is exactly as before,
giving us L1L2 = h(K) ∈ F as required.

Finally, to see (3), set K = if ε ∈ L1 then {Xn | n ≥ 0} else {Xn | n ≥ 1},
and set h(X) = L1, giving us L+

1 = h(K) ∈ F as required.

Theorem 4.11 (PHRS Closed Under Rational Operations). Let L1, L2 ⊆ A∗1
be (repetition-free) (k, l)-PHRS languages for any k ≥ 2, l ≥ 1. Then:

1. L1 ∪ L2 is a (r.-free) (k, l)-PHRS language; (closure under union)

2. L1L2 is a (r.-free) (k, l)-PHRS language; (closure under concatenation)

3. L+
1 is a (r.-free) (k, l)-PHRS language. (closure under Kleene plus)

Proof. If l = 1, then Theorem 4.7(1) tells us that PHRSk,1 satisfies the condi-
tion of Lemma 4.10 since REG ⊆ HRSk. If l ≥ 2 then Theorem 4.7(3) tells us
that PHRSk satisfies the condition of Lemma 4.10 since REG ⊆ PHRSk.

Corollary 4.12 (PHRS More Than ET0L and MCF). We have the following
strict inclusions: MCF2 ∪ EOL (PHRSrf

4,1 and MCF2 ∪ ET OL (PHRSrf
4 .

Proof. Inclusion follows from Theorems 4.4 and 4.6, but is not the interesting
part of this Theorem. The interesting part is that this there are repetition-free
(2, 1)-PHRS (repetition-free 2-PHRS) languages that are not just E0L (ET0L)
or 2-MCF. Take K ⊆ A∗ and L ⊆ B∗ to be as in Theorem 2.10, over disjoint
alphabets. Then L′ = K ∪ L is repetition-free (2, 1)-PHRS by Theorem 4.11,
but is neither E(T)0L nor MCF since if it were, then L′∩A∗ and L′∩B∗ would
be both 2-MCF and E0L since these language families are closed under rational
intersection (Theorems 2.1 and 2.9), but Theorem 2.10 tells us that L′ ∩ A∗ is
not ET0L and L′ ∩B∗ is not MCF.

We now show closure under rational intersection, inspired by the proof of
Theorem V.1.7(iv) of [4]:

Theorem 4.13 (PHRS Closed Under Rational Intersection). Let L ⊆ A∗ be a
(repetition-free) (k, l)-PHRS language and K ⊆ B∗ be a regular language, for
any k ≥ 2, l ≥ 1. Then L ∩K is a (repetition-free) (k, l)-PHRS language.

Proof. By Theorem 4.2, it will suffice to show that when L is a (repetition-free)
(k, 1)-PHRS language, L ∩ K is a (repetition-free) (k, 1)-PHRS language, and
when L is a (repetition-free) (k, 2)-PHRS language, L∩K is a (repetition-free)
k-PHRS language. Our proof will set up some commonalities for both cases,
and then we will analyse the cases l = 1 and l = 2 separately.

There must exist a (repetition-free) (k, l)-PHR grammar G = ((Σ, type), A,
S, {T1, . . . , Tl}, S) such that L(G) is a string graph language and STR(L(G)) =
L \ {ε}. We assume without loss of generality that (Σ \A) ∩B = ∅ and that G
is of the form specified by Lemma 3.15. There must also be a deterministic full
FSA M = (Q,B, δ, p, F) such that L(M) = K.

28

We introduce the intermediate notion of a hypergraph with node labels be-
cause we want to label the nodes by states of M. A node labelled hypergraph
over (C, Q) is a pair (H, l) where H is a hypergraph over C = (Σ, type) and
l is a function VH → Q. Notice that any such node labelled hypergraph can
be encoded as a hypergraph over (∆, type′|∆): for each e ∈ EH , the new hy-
peredge labelling function is defined by sending e to (labH(e), q1, . . . , qi) where
i = typeH(e) and qj = l(attH(e)(j)) for 1 ≤ j ≤ i. Call this injective encoding
function enc. Next, given a type t hypergraph H over C and a sequence σ : t→
Q, define CHOICESQ(H,σ) = {enc((H, l)) | l : VH → Q, l ◦ extH = σ}. Given
a rule (L,R) over C, define AUGMENTQ(L,R) = {((L, σ(1), . . . , σ(t)), H) | t =
type(L), σ : t→ Q,H ∈ CHOICESQ(R, σ)}.

We now handle the case l = 1. We will construct a (repetition-free) (k, 1)-
PHR grammar G′ = ((Σ′, type′), A ∩ B, {T ′}, S) such that L(G′) is a string
graph language and STR(L(G′)) = (L ∩ K) \ {ε}, thus proving that L ∩ K
is a (repetition-free) (k, 1)-PHRS language. Let ∆ = (

⋃
0≤i≤k{type−1({i}) ×

Qi})∪{F0, . . . , Fk}, Σ′ = ∆∪{S}∪(A∩B)∪{F0, . . . , Fk}, type′((X, q1, . . . qi)) =
type(X) for all (X, q1, . . . qi) ∈ ∆, type′(S) = 2, type′(X) = 2 for all X ∈ A∩B,
and type′(Fi) = i for all 0 ≤ i ≤ k. Define T ′ = F ⊕ (T ′1 ∪ T ′2 ∪ T ′3) where:

1. T ′1 = {((X, q1, q2), Y •) | X ∈ A ∩B, δ(q1, X) = q2};
2. T ′2 =

⋃
(L,R)∈T AUGMENTQ(L,R);

3. T ′3 = {(S, (S, p, q)•) | q ∈ F};
4. F = {(X,F •type′(X)) | X ∈ Σ′}.

It is not hard to check this grammar will produce a terminal string graph
(x1x2 · · ·xm)• if and only if the previous hypergraph in the derivation was a
string graph of the form ((x1, q1, q2)(x2, q2, q3) · · · (xm, qm, qm+1))• and δ(qi, xi)
= qi+1 for 1 ≤ i ≤ m, q1 = p, and qm+1 ∈ F , that is, traced out an accepting
path in the FSA M, having simulated G.

Finally, we handle the case l = 2. We will construct a (repetition-free) k-
PHR grammar G′ = ((Σ′, type′), A∩B, {T ′0, T ′1, T ′2}, S) such that L(G′) is a string
graph language and STR(L(G′)) = (L ∩K) \ {ε}, thus proving that L ∩K is a
(repetition-free) k-PHRS language. Let ∆ and (Σ, type′) be as before. Define
(for i = 1, 2):

1. T ′0 = F ⊕ {((X, q1, q2), Y •) | X ∈ A ∩B, δ(q1, X) = q2};
2. T ′i = R⊕ (

⋃
(L,R)∈Ti

AUGMENTQ(L,R) ∪ {(S, (S, p, q)•) | q ∈ F});

where F = {(X,F •type′(X)) | X ∈ Σ′} and R = {(X,X•) | X ∈ Σ′}. Clearly

progress in derivations is made when the tables T ′1 and T ′2 are used, and ap-
plication of the table T0 will produce a terminal string graph (x1x2 · · ·xm)• if
and only if the previous hypergraph was a string graph of the form ((x1, q1, q2)
(x2, q2, q3) · · · (xm, qm, qm+1))• and δ(qi, xi) = qi+1 for 1 ≤ i ≤ m, q1 = p, and
qm+1 ∈ F , as before.

Finally, we show closure under inverse homomorphisms, via the following
general result:

29

Lemma 4.14. Let F be a family of string languages which is closed under
rational substitution and rational intersection. Let L ⊆ A∗ be an F language
and ϕ : B∗ → A∗ a homomorphism. Then ϕ−1(L) is an F language too.

Proof. LetB be a copy ofB such that (A∪B)∩B = ∅, and let · : B → B identify
each b ∈ B with its copy b ∈ B. For each a ∈ A, define the regular language
La = {w1aw2 | w1, w2 ∈ B∗} ⊆ (A∪B)∗ and the rational substitution h on A by
a 7→ La. Also define K =

⋃
n∈N{ϕ(x1)x1ϕ(x2)x2 ···ϕ(xn)xn | x1, x2, . . . xn ∈ B}

and the homomorphism ψ : (A ∪ B)∗ → B∗ by ψ(a) = ε for each a ∈ A and
ψ(b) = b for each b ∈ B.

Notice h(L) ∩K =
⋃

n∈N{ϕ(x1)x1ϕ(x2)x2 · · · ϕ(xn)xn | x1, . . . , xn ∈ B and
ϕ(x1)ϕ(x2) · · ·ϕ(xn) ∈ L}, so we have ϕ−1(L) = ψ(h(L) ∩ K). Now, h(L) is
an F language since F is closed under rational substitution, h(L) ∩K is an F
language since F is closed under rational intersection, and ψ(h(L) ∩ K) is an
F language since F is closed under homomorphisms (a special case of rational
substitution). Thus, ϕ−1(L) is an F language, as required.

Theorem 4.15 (PHRS Closed Under Inverse Homomorphisms). For all k ≥ 2,
PHRSk is closed under inverse homomorphisms.

Proof. The result follows from Theorems 4.7 and 4.13 and Lemma 4.14.

4.3. Group Word Problem Closure Properties

Since the family of k-PHRS languages is a full AFL for any k ≥ 2, it satisfies
the following important properties:

Theorem 4.16 (WP Independent Of Presentation [36]). Let F be a family of
string languages which is closed under inverse homomorphisms, and let 〈X | R〉
be a presentation of a group G such that WPX(G) is an F language. Then all
presentations 〈X ′ | R′〉 of G are such that WPX′(G) is an F language.

Theorem 4.17 (WP Subgroup and Supergroup Closure [16]). Let F be a full
AFL and G be a group with word problem in F . Then every finitely generated
subgroup and every finite index supergroup of G has word problem in F .

In 2019, Kropholler and Spriano showed that a graph of groups with vertex
groups with MCF word problem and edge groups finite, yields a group with an
MCF word problem [37]. A special case of this construction is a free product
of groups. We now show that a free product of groups with (repetition-free)
PHRS word problems is a group with a (repetition-free) PHRS word problem.
Our strategy is entirely different to Kropholler and Spriano’s approach, which
relied on Denkinger’s automata characterisation of MCF languages (Theorem
2.2).

The following easy lemma, where presentations of groups are written as
monoid presentations, gives us a recursive description of the word problem of
free products, enabling us to prove Theorem 4.19.

30

Lemma 4.18. Let G1, G2 be finitely generated groups over disjoint alphabets
A1 = {a1, . . . an}, A2 = {b1, . . . bm}, respectively. If X = A1 ∪ A2 and Li =
WPAi

(Gi) for i = 1, 2, then WPX(G1 ∗G2) is the smallest set L such that ε ∈ L
and ∀i ∈ {1, 2},∀w ∈ Li,∀u, v ∈ X∗, uv ∈ L⇒ uwv ∈ L.

Theorem 4.19 (WP Free Product Closure). Let F be a family of string lan-
guages containing all finite languages, closed under union and concatenation,
and closed under nested iterated substitution. Then if G1, G2 are groups with
presentations admitting a F word problem, G1∗G2 has a presentation admitting
a F word problem.

Proof. Let A1, A2, X, L1, L2, L be as in Lemma 4.18, then it is immediate
that iterated application of the nested non-erasing F-substitution h of strings
on A1∪A2, defined by h(ai) = {ai}∪aiL1∪L1ai and h(bj) = {bj}∪bjL2∪L2bj
for all i ∈ n, j ∈ m, to L, gives us exactly WPX(G1 ∗ G2). The result them
follows from the assumed closure properties.

4.4. The Membership Problem

We show that the universal membership problem for PHRS grammars is
decidable. That is, there is an algorithm that, when given a PHR grammar G
generating a string graph language and a string w, can decide if w ∈ STR(L(G)).

Theorem 4.20 (Decidable PHRS Membership). The following problem is de-
cidable, with an explicit algorithm:

Instance: A PHR grammar G = (C, A, S, T) generating a string graph
language and a string w ∈ A∗.

Question: Is w ∈ STR(L(G))?

Proof. Theorem 4.13 tells us how to turn the PHR grammar G and the regular
language {w} into a PHR grammar G′ generating a string graph language such
that STR(L(G′)) = STR(L(G)) ∩ {w}. Then:

w 6∈ STR(L(G))

⇔ STR(L(G)) ∩ {w} = ∅
⇔ STR(L(G′)) = ∅
⇔ L(G′) = ∅.

Finally, Theorem 3.25 tells us how to decide emptiness of L(G′).

Corollary 4.21 (PHRS is Recursive). PHRS (REC.

Proof. Inclusion follows from decidable membership (Theorem 4.20). Strictness
from decidable emptiness (Theorem 3.25).

4.5. Weak-Coded PHRS Languages

Theorem 2.12 tells us that the string generational power of HR grammars is
not restricted by requiring rules to be repetition-free. It is not clear if a similar
result holds in the parallel replacement setting. If it turns out that there is no

31

such result, there is still a middle-ground where one can obtain all of the closure
properties we have shown in this section, but without allowing merging of nodes
by derivations:

Definition 4.22 (WPHR String Language). Call the below equivalent families
the repetition-free weak-coded (k, l)-PHR string ((k, l)-WPHRS) languages:

1. The family of string languages generated by repetition-free (k, l)-PHR
grammars under the image of some weak coding.

2. The family of string languages generated by repetition-free (k, l)-PHR
grammars with a special type 2 label empty, interpreted as the empty
string by STR.

For k ≥ 2 and l ≥ 1, we define WPHRSrf
k,l, WPHRSrf

k , and WPHRSrf in the
obvious way.

Theorem 4.23 (WPHRS Hierarchy Position). For all k ≥ 2, we have:

1. WPHRSrf
k,2 =WPHRSrf

k ;

2. EOL ⊆ PHRSrf
k,1 ⊆ WPHRSrf

k,1 ⊆ PHRSk,1
3. ET OL ⊆ PHRSrf

k ⊆ WPHRSrf
k ⊆ PHRSk.

Moreover:

1. EOL = PHRSrf
2,1 =WPHRSrf

2,1 = PHRS2,1;

2. ET OL = PHRSrf
2 =WPHRSrf

2 = PHRS2.

Proof. The first part follows from Theorem 3.10. For the second part, EOL ⊆
PHRSrf

k,1 follows from Theorem 4.4, PHRSrf
k,1 ⊆ WPHRSrf

k,1 follows by defi-

nition using the identity coding, and WPHRSrf
k,1 ⊆ PHRSk,1 follows using the

fact that PHRSk,1 is closed under weak codings (Theorem 4.8). The third part
follows in a similar way to the second. The final two statements follow from
Theorem 4.4 and the earlier inclusions we established in this proof.

Using the results and proofs from Subsection 4.2, it is not too difficult to
see that WPHRSrf

k is a hyper-algebraically closed full AFL, for all k ≥ 2. We
finish this subsection by giving the fine details of the closure properties.

Theorem 4.24 (WPHRS Closed Under Substitutions). Let L ⊆ A∗. Then:

1. for any k ≥ 2, if L is a k-HRS language and h is aWPHRSrf
k,1-substitution

on A, then h(L) is a repetition-free (k, 1)-WPHRS language;

2. for any k ≥ 2, if L is a repetition-free (k, 1)-WPHRS language and h is
a finite substitution on A, then h(L) is a repetition-free (k, 1)-WPHRS
language;

3. for any k ≥ 2, if L is a repetition-free k-PHRS language and h is a
WPHRSrf

k -substitution on A, then h(L) is a repetition-free k-WPHRS
language.

32

Corollary 4.25 (WPHRS Closed Under Homomorphisms). Let L ⊆ A∗ be a
repetition-free (k, l)-WPHRS language for any k ≥ 2, l ≥ 1 and ϕ : A∗ → B∗ be
a homomorphism. Then ϕ(L) is a repetition-free (k, l)-WPHRS language.

Theorem 4.26 (WPHRS Hyper-Algebraically Closed). Let L ⊆ A∗. Then, for
any k ≥ 2, if L is a repetition-free k-WPHRS language and H is a finite set of
WPHRSrf

k -substitutions on A, then ITERH(L) is a repetition-free k-WPHRS
language.

Theorem 4.27 (WPHRS Closed Under Rational Operations). For all k ≥
2, l ≥ 1, WPHRSrf

k is closed under rational operations.

Theorem 4.28 (WPHRS Closed Under Rational Intersection). For all k ≥
2, l ≥ 1, WPHRSrf

k is closed under rational intersection.

Theorem 4.29 (WPHRS Closed Under Inverse Homomorphisms). For all k ≥
2, l ≥ 1, WPHRSrf

k is closed under inverse homomorphisms.

5. Conclusion and Future Work

We have shown some foundational properties of parallel hyperedge replace-
ment grammars, with a focus on string generational power, showing that the
family of PHRS languages is a hyper-algebraically closed super AFL, contain-
ing all MCF and ET0L languages. In Subsection 4.5 we discuss the possible
gap between the string generative power of repetition-free and not necessarily
repetition-free PHR grammars. We conjecture that there is no gap:

Conjecture 5.1 (PHR String Generational Power). For all k ≥ 2, l ≥ 1, we
have the following: PHRSrf

k,l =WPHRSrf
k,l = PHRSk,l.

It remains future work to show that the family of PHRS languages is a strict
subclass of the context-sensitive languages. We conjecture this to be true, and
we also conjecture that only even increments in order increase string generative
power. Figure 13 summarises the formal language closure properties we know,
and Figures 14, 15, 16 and 17 summarise the key language hierarchies, where
PHR ,l =

⋃
k≥2 PHRk,l and PHRS ,l =

⋃
k≥2 PHRSk,l for any l ≥ 1.

Conjecture 5.2 (CS Generalises PHRS). PHRS (CS.

Conjecture 5.3 (PHRS Grouping). For all k ≥ 1, PHRS2k = PHRS2k+1.

Because PHRS is closed under inverse homomorphisms, we know that the
property of having a PHRS word problem is independent of the presentation.
We have additionally shown that PHRS groups are closed under free product.
We also conjecture the following, which has a wide-reaching corollary:

Conjecture 5.4 (PHRS WP Double Torus). The fundamental group of the
double torus admits a PHRS word problem which is neither an MCF nor ET0L
language.

33

Corollary 5.5. If Conjecture 5.4 is true, then the word problem of any surface
group is PHRS.

Proof. By a surface here, we mean a closed, connected, orientable, 2-manifold,
and by a surface group, we mean the fundamental group of a surface. Any
surface always has a finite genus. The genus 0 surface (the sphere) gives us the
trivial group, and 1 (the torus), Z2 (see for example [38]). We know both of
these groups are regular, 2-MCF [15], respectively, so certainly PHRS (Theorem
4.6). For higher genuses, it follows from the Fundamental Theorem of Covering
Spaces (Theorem 1.38 of [39]) that the fundamental group appears as a finitely
generated subgroup of the fundamental group of a genus 2 surface such as a
double torus. Because PHRS is a full AFL, if the double torus has fundamental
group with PHRS word problem, then all its finitely generated subgroups do
too (Theorem 4.17).

Highly related to the word problem is the consideration of sets of solutions of
more general equations over groups or other structures. It is a recent result that
solutions set (of fixed normal forms) of finite systems of equations in hyperbolic
groups are EDT0L languages [40]. We are yet to consider deterministic parallel
hyperedge replacement, but it may be possible to establish that other classes of
groups have solution sets that are deterministic parallel hyperedge replacement
string languages.

Recall from Theorem 2.7 that the ET0L languages are the smallest hyper-
algebraically closed super AFL. It is possible that the PHRS languages could
be the smallest hyper-algebraically closed super AFL containing the MCF lan-
guages. Other more general future work would include investigating both the
tree and graph generational power of PHR grammars, and investigating more
decidability and complexity results for basic problems relating to PHR gram-
mars. We do not know if the finiteness problem is decidable, but we conjecture
that this can be decided, in general. If Conjecture 5.1 fails, it will also be
worthwhile to fill out some of the question marks in Figure 13.

Conjecture 5.6 (Decidable PHR Finiteness). The following problem is decid-
able, with an explicit algorithm:

Instance: A PHR grammar G = (C, A, S, T).
Question: Does L(G) contain only finitely many non-isomorphic hyper-

graphs?

Acknowledgements

I should like to thank Detlef Plump for introducing me to graph transforma-
tion and teaching me to write papers for this audience, my supervisors Sarah
Rees and Andrew Duncan for their guidance, Annegret Habel and Meng-Che Ho
for their helpful email discussions regarding hyperedge replacement and surface
groups, respectively, and Murray Elder for introducing me to MCF languages.
I am also grateful to the anonymous reviewers for their comments on the earlier
TERMGRAPH workshop proceedings version of this paper.

34

Operation/Family HRSrf
k

= HRSk
PHRSrf

k,1 WPHRSrf
k,1 PHRSk,1 PHRSrf

k WPHRSrf
k PHRSk

Rational Operations 3 3 3 3 3 3 3

Rational Intersection 3 3 3 3 3 3 3

Inverse Homomorphisms 3 ? ? ? ? 3 3

Non-Erasing Homomorphisms 3 3 3 3 3 3 3

Arbitrary Homomorphisms 3 ? 3 3 ? 3 3

Non-Erasing Finite Substitutions 3 3 3 3 3 3 3

Arbitrary Finite Substitutions 3 ? 3 3 ? 3 3

Non-Erasing Substitutions 3 ? ? ? 3 3 3

Arbitrary Substitutions 3 ? ? ? ? 3 3

Iterated Nested Non-Erasing Substitutions 3 ? ? ? 3 3 3

Iterated Nested Arbitrary Substitutions 3 ? ? ? ? 3 3

Iterated Non-Erasing Substitutions 7 ? ? ? 3 3 3

Iterated Arbitrary Substitutions 7 ? ? ? ? 3 3

Hyper-Algebraic Closure 7 7 7 7 ? 3 3

Figure 13: Summary of formal language closure properties (k ≥ 2)

MCF2 = HRSrf
4 = HRSrf

5

= HRS4 = HRS5

MCFk = HRSrf
2k = HRSrf

2k+1

= HRS2k = HRS2k+1

MCFk+1 = HRSrf
2k+2 = HRSrf

2k+3

= HRS2k+2 = HRS2k+3

MCF = HRSrf = HRS

CF =MCF1 = HRSrf
2 = HRSrf

3

= HRS2 = HRS3

EOL = PHRSrf
2,1

=WPHRSrf
2,1 = PHRS2,1

PHRSrf
3,1

PHRSrf
4,1

PHRSrf
5,1

PHRSrf
2k,1

PHRSrf
2k+1,1

PHRSrf
2k+2,1

PHRSrf
2k+3,1

PHRSrf
,1

CS

REC

WPHRSrf
3,1

WPHRSrf
4,1

WPHRSrf
5,1

WPHRSrf
2k,1

WPHRSrf
2k+1,1

WPHRSrf
2k+2,1

WPHRSrf
2k+3,1

WPHRSrf
,1

PHRS3,1

PHRS4,1

PHRS5,1

PHRS2k,1

PHRS2k+1,1

PHRS2k+2,1

PHRS2k+3,1

PHRS ,1

Figure 14: Proved single table string language hierarchy (k ≥ 3)

References

[1] A. Lindenmayer, Mathematical models for cellular interactions in devel-
opment I. filaments with one-sided inputs, Journal of Theoretical Biology
18 (3) (1968) 280–299. doi:10.1016/0022-5193(68)90079-9.

[2] A. Lindenmayer, Mathematical models for cellular interactions in develop-
ment II. simple and branching filaments with two-sided inputs, Journal of
Theoretical Biology 18 (3) (1968) 300–315. doi:10.1016/0022-5193(68)

90080-5.

[3] A. Lindenmayer, Developmental systems without cellular interactions, their
languages and grammars, Journal of Theoretical Biology 30 (3) (1971) 455–
484. doi:10.1016/0022-5193(71)90002-6.

35

https://doi.org/10.1016/0022-5193(68)90079-9
https://doi.org/10.1016/0022-5193(68)90080-5
https://doi.org/10.1016/0022-5193(68)90080-5
https://doi.org/10.1016/0022-5193(71)90002-6

MCF2 = HRSrf
4 = HRSrf

5

= HRS4 = HRS5

MCFk = HRSrf
2k = HRSrf

2k+1

= HRS2k = HRS2k+1

MCFk+1 = HRSrf
2k+2 = HRSrf

2k+3

= HRS2k+2 = HRS2k+3

MCF = HRSrf = HRS

CF =MCF1 = HRSrf
2 = HRSrf

3

= HRS2 = HRS3

ET OL = PHRSrf
2,2 =WPHRSrf

2,2 = PHRS2,2

= PHRSrf
2 =WPHRSrf

2 = PHRS2

PHRSrf
3,2 = PHRSrf

3

PHRSrf
4,2 = PHRSrf

4

PHRSrf
5,2 = PHRSrf

5

PHRSrf
2k,2 = PHRSrf

2k

PHRSrf
2k+1,2 = PHRSrf

2k+1

PHRSrf
2k+2,2 = PHRSrf

2k+2

PHRSrf
2k+3,2 = PHRSrf

2k+3

PHRSrf
,2 = PHRSrf

CS

REC

WPHRSrf
3,2 =WPHRSrf

3

WPHRSrf
4,2 =WPHRSrf

4

WPHRSrf
5,2 =WPHRSrf

5

WPHRSrf
2k,2 =WPHRSrf

2k

WPHRSrf
2k+1,2 =WPHRSrf

2k+1

WPHRSrf
2k+2,2 =WPHRSrf

2k+2

WPHRSrf
2k+3,2 =WPHRSrf

2k+3

WPHRSrf
,2 =WPHRSrf

PHRS3,2 = PHRS3

PHRS4,2 = PHRS4

PHRS5,2 = PHRS5

PHRS2k,2 = PHRS2k

PHRS2k+1,2 = PHRS2k+1

PHRS2k+2,2 = PHRS2k+2

PHRS2k+3,2 = PHRS2k+3

PHRS ,2 = PHRS

Figure 15: Proved multiple tables string language hierarchy (k ≥ 3)

[4] G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems, Vol. 90
of Pure and Applied Mathematics, Academic Press, 1980.

[5] L. Kari, G. Rozenberg, A. Salomaa, L Systems, Springer, 1997, pp. 253–
328. doi:10.1007/978-3-642-59136-5_5.

[6] J. Feder, Plex languages, Information Sciences 3 (3) (1971) 225–241. doi:
10.1016/S0020-0255(71)80008-7.

[7] T. Pavlidis, Linear and context-free graph grammars, Journal of the ACM
19 (1) (1972) 11–22. doi:10.1145/321679.321682.

[8] H. Seki, T. Matsumura, M. Fujii, T. Kasami, On multiple context-free
grammars, Theoretical Computer Science 88 (2) (1991) 191–229. doi:

10.1016/0304-3975(91)90374-B.

[9] J. Engelfriet, L. Heyker, The string generating power of context-free hyper-
graph grammars, Journal of Computer and System Sciences 43 (2) (1991)
328–360. doi:10.1016/0022-0000(91)90018-Z.

[10] D. Weir, Linear context-free rewriting systems and deterministic tree-
walking transducers, in: H. Thompson (Ed.), Proc. 30th Annual Meeting
of the Association for Computational Linguistics, Association for Compu-
tational Linguistics, 1992, pp. 136–143. doi:10.3115/981967.981985.

36

https://doi.org/10.1007/978-3-642-59136-5_5
https://doi.org/10.1016/S0020-0255(71)80008-7
https://doi.org/10.1016/S0020-0255(71)80008-7
https://doi.org/10.1145/321679.321682
https://doi.org/10.1016/0304-3975(91)90374-B
https://doi.org/10.1016/0304-3975(91)90374-B
https://doi.org/10.1016/0022-0000(91)90018-Z
https://doi.org/10.3115/981967.981985

MCF2 = HRSrf
4 = HRSrf

5

= HRS4 = HRS5

MCFk = HRSrf
2k = HRSrf

2k+1

= HRS2k = HRS2k+1

MCFk+1 = HRSrf
2k+2 = HRSrf

2k+3

= HRS2k+2 = HRS2k+3

MCF = HRSrf = HRS

CF =MCF1 = HRSrf
2 = HRSrf

3

= HRS2 = HRS3

EOL = PHRSrf
2,1 = PHRSrf

3,1 =WPHRSrf
2,1

=WPHRSrf
3,1 = PHRS2,1 = PHRS3,1

PHRSrf
4,1 = PHRSrf

5,1 =WPHRSrf
4,1

=WPHRSrf
5,1 = PHRS4,1 = PHRS5,1

PHRSrf
2k,1 = PHRSrf

2k,1+1 =WPHRSrf
2k,1

=WPHRSrf
2k+1,1 = PHRS2k,1 = PHRS2k+1,1

PHRSrf
2k+2,1 = PHRSrf

2k+3,1 =WPHRSrf
2k+2,1

=WPHRSrf
2k+3,1 = PHRS2k+2,1 = PHRS2k+3,1

PHRSrf
,1 =WPHRSrf

,1 = PHRS ,1

CS

REC

ET OL = PHRSrf
2,2 = PHRSrf

3,2 =WPHRSrf
2,2

=WPHRSrf
3,2 = PHRS2,2 = PHRS3,2

= PHRSrf
2 = PHRSrf

3 =WPHRSrf
2

=WPHRSrf
3 = PHRS2 = PHRS3

PHRSrf
4,2 = PHRSrf

5,2 =WPHRSrf
4,2

=WPHRSrf
5,2 = PHRS4,2 = PHRS5,2

= PHRSrf
4 = PHRSrf

5 =WPHRSrf
4

=WPHRSrf
5 = PHRS4 = PHRS5

PHRSrf
2k,2 = PHRSrf

2k,2+1 =WPHRSrf
2k,2

=WPHRSrf
2k+1,2 = PHRS2k,2 = PHRS2k+1,2

= PHRSrf
2k = PHRSrf

2k+1 =WPHRSrf
2k

=WPHRSrf
2k+1 = PHRS2k = PHRS2k+1

PHRSrf
2k+2,2 = PHRSrf

2k+3,2 =WPHRSrf
2k+2,2

=WPHRSrf
2k+3,2 = PHRS2k+2,2 = PHRS2k+3,2

= PHRSrf
2k+2 = PHRSrf

2k+3 =WPHRSrf
2k+2

=WPHRSrf
2k+3 = PHRS2k+2 = PHRS2k+3

PHRSrf
,2 =WPHRSrf

,2 = PHRS ,2

= PHRSrf =WPHRSrf = PHRS

Figure 16: Conjectured string language hierarchy (k ≥ 3)

HR0

PHR0,1

HRk PHR0,2 = PHR0

PHRk,1

HRk+1 PHRk,2 = PHRk

PHRk+1,1

HR PHRk+1,2 = PHRk+1

PHR ,1

PHR ,2 = PHR

Figure 17: Proved hypergraph language hierarchy (k ≥ 1)

37

[11] P. Novikov, Über die algorithmische unentscheidbarkeit des wortprob-
lems in der gruppentheorie, Trudy Matematicheskogo Instituta imeni V.A.
Steklova 44 (1955) 1–143.

[12] A. Anisimov, Group languages, Cybernetics 7 (1971) 594–601. doi:10.

1007/BF01071030.

[13] D. Muller, P. Schupp, Groups, the theory of ends, and context-free lan-
guages, Journal of Computer and System Sciences 26 (3) (1983) 295–310.
doi:10.1016/0022-0000(83)90003-X.

[14] S. Salvati, Mix is a 2-mcfl and the word problem in Z2 is captured by the
io and the oi hierarchies, Journal of Computer and System Sciences 81 (7)
(2015) 1252–1277. doi:10.1016/j.jcss.2015.03.004.

[15] M.-C. Ho, The word problem of Zn is a multiple context-free lan-
guage, Groups Complexity Cryptology 10 (1) (2018) 9–15. doi:10.1515/

gcc-2018-0003.

[16] R. Gilman, R. Kropholler, S. Schleimer, Groups whose word problems are
not semilinear, Groups Complexity Cryptology 10 (2) (2018) 53–62. doi:

10.1515/gcc-2018-0010.

[17] A. Aho, Indexed grammars – an extension of context-free grammars, Jour-
nal of the ACM 15 (4) (1968) 647–671. doi:10.1145/321479.321488.

[18] R. Gilman, M. Shapiro, On groups whose word problem is solved by a
nested stack automaton (1998). arXiv:math/9812028.
URL https://arxiv.org/abs/math/9812028

[19] L. Ciobanu, M. Elder, M. Ferov, Applications of L systems to group theory,
International Journal of Algebra and Computation 28 (2) (2018) 309–329.
doi:10.1142/S0218196718500145.

[20] A. Habel, Hyperedge Replacement: Grammars and Languages, Vol. 643
of Lecture Notes in Computer Science, Springer, 1992. doi:10.1007/

BFb0013875.

[21] H.-J. Kreowski, Parallel Hyperedge Replacement, Springer, 1992, pp. 271–
282. doi:10.1007/978-3-642-58117-5_17.

[22] H.-J. Kreowski, Five facets of hyperedge replacement beyond context-
freeness, in: Z. Ésik (Ed.), Proc. 9th International Conference on Fun-
damentals of Computation Theory (FCT 1993), Vol. 710 of Lecture
Notes in Computer Science, Springer, 1993, pp. 69–86. doi:10.1007/

3-540-57163-9_5.

[23] G. Campbell, Parallel hyperedge replacement string languages, in: P. Bahr
(Ed.), Proc. 11th International Workshop on Computing with Terms and

38

https://doi.org/10.1007/BF01071030
https://doi.org/10.1007/BF01071030
https://doi.org/10.1016/0022-0000(83)90003-X
https://doi.org/10.1016/j.jcss.2015.03.004
https://doi.org/10.1515/gcc-2018-0003
https://doi.org/10.1515/gcc-2018-0003
https://doi.org/10.1515/gcc-2018-0010
https://doi.org/10.1515/gcc-2018-0010
https://doi.org/10.1145/321479.321488
https://arxiv.org/abs/math/9812028
https://arxiv.org/abs/math/9812028
http://arxiv.org/abs/math/9812028
https://arxiv.org/abs/math/9812028
https://doi.org/10.1142/S0218196718500145
https://doi.org/10.1007/BFb0013875
https://doi.org/10.1007/BFb0013875
https://doi.org/10.1007/978-3-642-58117-5_17
https://doi.org/10.1007/3-540-57163-9_5
https://doi.org/10.1007/3-540-57163-9_5
https://cdn.gjcampbell.co.uk/2021/PHRS-Languages.pdf

Graphs (TERMGRAPH 2020), Electronic Proceedings in Theoretical Com-
puter Science, Open Publishing Association, 2021, to appear.
URL https://cdn.gjcampbell.co.uk/2021/PHRS-Languages.pdf

[24] J. Hopcroft, R. Motwani, J. Ullman, Introduction to Automata Theory,
Languages, and Computation, 3rd Edition, Addison-Wesley, 2006.

[25] J. Král, A modification of a substitution theorem and some necessary and
sufficient conditions for sets to be context-free, Mathematical systems the-
ory 4 (1970) 129–139. doi:10.1007/BF01691097.

[26] A. Aho, J. Ullman, Translations on a context free grammar, Informa-
tion and Control 19 (5) (1972) 439–475. doi:10.1016/S0019-9958(71)

90706-6.

[27] V. Shanker, D. Weir, A. Joshi, Characterizing structural descriptions pro-
duced by various grammatical formalisms, in: C. Sidner (Ed.), Proc.
25th Annual Meeting on Association for Computational Linguistics (ACL
’87), Association for Computational Linguistics, 1987, pp. 104–111. doi:

10.3115/981175.981190.

[28] T. Denkinger, An automata characterisation for multiple context-free lan-
guages, in: S. Brlek, C. Reutenauer (Eds.), Proc. International Confer-
ence on Developments in Language Theory (DLT 2016), Vol. 9840 of
Lecture Notes in Computer Science, Springer, 2016, pp. 138–150. doi:

10.1007/978-3-662-53132-7_12.

[29] R. Parikh, On context-free languages, Journal of the ACM 13 (4) (1966)
570–581. doi:10.1145/321356.321364.

[30] G. Rozenberg, A. Salomaa, L Systems, Vol. 15 of Lecture Notes in Com-
puter Science, Springer, 1974. doi:10.1007/3-540-06867-8.

[31] A. Ehrenfeucht, G. Rozenberg, On some context-free languages that are not
deterministic ET0L languages, R.A.I.R.O. Informatique théorique 11 (4)
(1977) 273–291. doi:10.1051/ita/1977110402731.

[32] T. Nishida, S. Seki, Grouped partial ET0L systems and parallel multi-
ple context-free grammars, Theoretical Computer Science 246 (1–2) (2000)
131–150. doi:10.1016/S0304-3975(99)00076-6.

[33] F. Drewes, H.-J. Kreowski, A. Habel, Hyperedge Replacement Graph
Grammars, World Scientific, 1997, pp. 95–162. doi:10.1142/

9789812384720_0002.

[34] M. Nielsen, EOL systems with control devices, Acta Informatica 4 (1975)
373–386. doi:10.1007/BF00289618.

[35] P. Asveld, Controlled iteration grammars and full hyper-AFL’s, Informa-
tion and Control 34 (3) (1977) 248–269. doi:10.1016/S0019-9958(77)

90308-4.

39

https://cdn.gjcampbell.co.uk/2021/PHRS-Languages.pdf
https://doi.org/10.1007/BF01691097
https://doi.org/10.1016/S0019-9958(71)90706-6
https://doi.org/10.1016/S0019-9958(71)90706-6
https://doi.org/10.3115/981175.981190
https://doi.org/10.3115/981175.981190
https://doi.org/10.1007/978-3-662-53132-7_12
https://doi.org/10.1007/978-3-662-53132-7_12
https://doi.org/10.1145/321356.321364
https://doi.org/10.1007/3-540-06867-8
https://doi.org/10.1051/ita/1977110402731
https://doi.org/10.1016/S0304-3975(99)00076-6
https://doi.org/10.1142/9789812384720_0002
https://doi.org/10.1142/9789812384720_0002
https://doi.org/10.1007/BF00289618
https://doi.org/10.1016/S0019-9958(77)90308-4
https://doi.org/10.1016/S0019-9958(77)90308-4

[36] T. Herbst, R. Thomas, Group presentations, formal languages and char-
acterizations of one-counter groups, Theoretical Computer Science 112 (2)
(1993) 187–213. doi:10.1016/0304-3975(93)90018-O.

[37] R. Kropholler, D. Spriano, Closure properties in the class of multiple
context-free groups, Groups Complexity Cryptology 11 (1) (2019) 1–15.
doi:10.1515/gcc-2019-2004.

[38] W. Massey, Algebraic Topology: An Introduction, Vol. 56 of Graduate
Texts in Mathematics, Springer, 1977.

[39] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.

[40] L. Ciobanu, M. Elder, Solutions sets to systems of equations in hyper-
bolic groups are EDT0L in PSPACE, in: C. Baier, I. Chatzigiannakis,
P. Flocchini, S. Leonardi (Eds.), Proc. 46th International Colloquium on
Automata, Languages, and Programming (ICALP 2019), Vol. 132 of Leib-
niz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2019, pp. 110:1–110:15. doi:10.4230/

LIPIcs.ICALP.2019.110.

40

https://doi.org/10.1016/0304-3975(93)90018-O
https://doi.org/10.1515/gcc-2019-2004
https://doi.org/10.4230/LIPIcs.ICALP.2019.110
https://doi.org/10.4230/LIPIcs.ICALP.2019.110

	Introduction
	Preliminaries
	String Languages
	MCF Languages
	ET0L Languages
	Hyperedge Replacement

	PHR Languages
	Definitions and Foundations
	Example PHR Languages
	The Power of Tables
	Rational Control of Traces
	Synchronisation and Substitution Closure
	The Emptiness Problem

	PHRS Languages
	Definitions and Foundations
	Formal Language Closure Properties
	Group Word Problem Closure Properties
	The Membership Problem
	Weak-Coded PHRS Languages

	Conclusion and Future Work

