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Strings

Definition 1 (Alphabet)

An alphabet Σ is a finite set. We call σ ∈ Σ a symbol, letter, or
character.

Definition 2 (String)

A string over Σ is a finite sequence of symbols from Σ. We usually write
these symbols side-by-side (e.g. w = abcabc is a string over {a, b, c}).
We denote the set of all strings over Σ by Σ∗.

Definition 3 (Language)

A language over Σ is simply a subset L ⊆ Σ∗.

All languages are countable sets, but there are uncountably many
languages over a fixed alphabet. Concatenation of strings is
concatenation of sequences, and we denote the empty string by ε.
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Rules

Definition 4 (Substring)

Given strings u, v over Σ, we say that u is a substring of v (u v v)
exactly when u is a subsequence of v .

Definition 5 (Rewriting Rule)

A string rewriting rule over Σ is a pair of strings p = (l , r).

Definition 6 (Rule Application)

We say that p = (l , r) can be applied to w iff l v w . We write w ⇒p z
to indicate that p has been applied to w , replacing l with r to yield z .

Formally, ⇒(l,r)= {(ulv , urv) | u, v ∈ Σ∗} ⊆ Σ∗ × Σ∗.

Given a set of rules R, we define ⇒R=
⋃

p∈R ⇒p. That is, w ⇒R z
means that w can be rewritten to z using one of the rules from R.
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SRSs and Grammars

Definition 7 (SRS)

Given an alphabet Σ and a finite set of rules R over Σ, we call the pair
(Σ,R) a string rewriting system (SRS).

Definition 8 (Grammar)

A grammar is a 4-tuple G = (T ,N,R,S) where T and N are finite
disjoint sets called terminals and non-terminals respectively, R is a finite
set of rules over T ∪ N such that each rule’s LHS contains at least one
non-terminal, and S ∈ N is the start symbol.

Define the accepted language to be the set of all terminal strings
derivable from s in 0 or more steps: L(G) := {w ∈ T ∗ | s ⇒∗R w}.

Non-terminals really do add generational power. For example, we cannot
describe palindromes without them.
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Language Classes I

Theorem 9 (Regular Language Characterisations)

Given L ⊆ Σ∗, the following are equivalent:

1 L is a recognisable subset of Σ∗;

2 L is a rational subset of Σ∗;

3 L is generated by a regular grammar;

4 L is accepted by a finite state automaton (FSA);

5 L is accepted by a deterministic FSA (DFSA);

6 L is accepted by a read-only Turing machine.

Theorem 10 (Context-Free Language Characterisations)

Given L ⊆ Σ∗, the following are equivalent:

1 L is generated by a context-free grammar;

2 L is accepted by a pushdown automaton.
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Language Classes II

Theorem 11 (Recursively Enumerable Language Characterisations)

Given L ⊆ Σ∗, the following are equivalent:

1 L is generated by an unrestricted grammar;

2 L is accepted by a Turing Machine.

Recall that the deterministic context-free languages were those accepted
by a deterministic pushdown automaton, and that the recursive languages
were those accepted by a Turing Machine that halts on all inputs.

Theorem 12 (Chomsky Hierarchy)

We have the following strict inclusions of language classes:

Finite ⊂ Regular ⊂ DCF ⊂ CF ⊂ CS ⊂ Recursive ⊂ r.e.

where (D)CF (Deterministic) Context-Free is, CS is Context-Sensitive,
and r.e. is Recursively Enumerable.
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Introduction

I never actually showed you a formal definition of a Turing Machine last
time. There are lots of genuinely useful equivalent definitions. We will
use one that lends itself to computing functions.

Our machine will have n read-only one-way input tapes and an
unrestricted output tape. Note that it’s actually possible (up to
encoding) for a single tape machine to simulate our n + 1 tape machine.

Our machine will be deterministic. This does not result in any reduction
in computational power, compared to allowing non-determinism. A
deterministic machine can simulate a non-deterministic machine and
accept exactly when it accepts.

But what about non-deterministic output? Well, we’re only interested in
computing functions, so being able to have non-deterministic output
simply isn’t useful. Moreover, it could be simulated by concatenation of
output with a special separator, anyway.
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A Formal Definition

We will fix the notation that ha denotes the accept state, hr denotes the
reject state, and ∆ denotes the blank symbol.

Definition 13 (Turing Machine)

An n-input Turing Machine is the 5-tuple M = (Q,Σ, Γ, q0, δ) where

1 Q is a finite set of states, s.t. {ha, hr} ⊆ Q;

2 Σ is the input alphabet, s.t. (Q ∪ {∆}) ∩ Σ = ∅;
3 Γ is the tape alphabet, s.t. (Σ ∪ {∆}) ⊆ Γ and Q ∩ Γ = ∅;
4 q0 ∈ Q is the initial state;

5 δ : ((Q \ {ha, hr})× Γn+1) ⇀ (Q × {S ,R}n × Γ× {L,S ,R}).

So δ is a partial function that says that when we are in a given state,
with our n + 1 tape heads looking at the given n + 1 symbols,
respectively, then we must move the n input tape heads in the way
prescribed, replace the symbol at the current position in the output tape,
and then move the output tape head.
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Machine Configurations

We will use n-TM to abbreviate n-input Turing Machine. Note that in the
definition, everything is finite, including the transition (partial) function δ.

The “current state” of a TM at any given time is called a configuration.
Before we start, we need to define an auxiliary function Γ∗ → Γ∗:

Definition 14 (Blank Trimming)

Given a string w ∈ Γ∗, by trim∆(w) we mean the largest substring of w
such that the last symbol is not ∆.

Definition 15 (Configuration)

The set of configurations of an n-TM M = (Q,Σ, Γ, q0, δ) is:

CM = {(u1qv1, . . . , un+1qvn+1) | ui ∈ Γ∗, q ∈ Q, vi ∈ trim∆(Γ∗)}.

Note that not all the configurations may be reachable from a given
starting configuration (it is in fact undecidable in general to ask!).

Graham Campbell School of Mathematics, Statistics and Physics, Newcastle University, UK

Turing Machines and Computability



Last Time Type-1 Computability Type-2 Computability

The Computation Relation

I’m actually not going to provide a formal definition in here, since it is
quite fiddly, and won’t help you understand it! It will be sufficient to
know that it is the lifting of δ to operate on the configurations, giving us
a binary relation `M on CM.

There are some subtleties that need addressing, however:

1 If by moving left, we move off the end of a tape, then we don’t allow
this. Such cases are replaced with a transition to the reject state
(hr ), leaving the all the tape heads in place.

2 The relation is total as a function (it is actually a function since we
are defining a deterministic machine). Any undefined transitions are
replaced, one again, with a transition to the reject state.

Note that since δ has no transitions from a halting state (hr or ha), then
a configuration is halted (in state hr or ha) iff there is no successor
according to `M. That is, either a machine is in a halted state and no
progress can be made, or it is not and progress can be made.
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TMs and Languages

Definition 16 (Recognised Language)

We define the language recognised by 1-TM M = (Q,Σ, Γ, q0, δ):

L(M) = {w ∈ Σ∗ | ∃γ1, γ
′
1, γ2, γ

′
2 ∈ Γ∗, (q0w , q0) `∗M (γ1haγ

′
1, γ2haγ

′
2)}.

Definition 17 (Recursive Languages)

1 A language L ⊆ Σ∗ is recursively enumerable (r.e.) iff there exists a
1-TM M over Σ such that L(M) = L.

2 A language L ⊆ Σ∗ is recursively iff there exists a 1-TM M over Σ
such that L(M) = L that halts on all inputs.

Proposition 18

A language L ⊆ Σ∗ is recursive iff both L and Σ∗ \ L are r.e..
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Encoded TMs

It is possible to uniquely (up to renaming of states) encode every Turing
Machine as a string over {0, 1}. The detail is not interesting (other than
noting that we must restrict the universe of states and alphabets to some
countable set), but it is useful to be able to speak of the “code” of a
TM. We will call this encoding function e.

Proposition 19

Let SA = {e(M) | M is a 1-TM and e(M) ∈ L(M)} be the codes of
all 1−TMs that accept themselves, and let NSA = {0, 1}∗ \ SA be the
complement (all machines that don’t accept themselves, and everything
that isn’t an encoding of a 1-TM).

Then SA is r.e. but not recursive, and NSA is not even r.e..

Proposition 20

Most languages are not even r.e.. There are |R| languages over {0, 1}
but only |N| r.e. languages, since there are only countably many TMs!
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Decision Problems

Definition 21 (Decision Problem)

A decision problem is a set of questions, each of which has a yes or no
answer.

We can view the language SA as a decision problem.

Example 22 (Self Accepting Problem)

Input: A 1-TM M.
Question: Does it accept its own code?

Encoding is usually left implicit. In particular, we can see that language
of yes-instances is exactly SA, and the no-instances is NSA ∩ EM where
EM is the language of all encoded 1-TMs.

Definition 23 (Decidable Problem)

We call a problem decidable whenever its yes-instances are a recursive
language, and undecidable otherwise (up to a “reasonable” encoding).
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The Membership Problem

There are two important versions of the membership problem.

Example 24 (Membership Problem)

Input: A string w ∈ Σ∗.
Question: Is w ∈ L(M), for some fixed 1-TM M?

Example 25 (Universal Membership Problem)

Input: A string w ∈ Σ∗ and a 1-TM M.
Question: Is w ∈ L(M)?

In the first case, the machine is fixed, and so often it will be decidable
(even if the machine is not terminating - there may exist a different
machine that recognises the same language and does terminate on all
inputs!). The universal version is obviously undecidable (and implicitly
has as input both the encoded input string and the encoded machine).
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More Undecidable Problems

Example 26 (Uniform Halting Problem)

Input: A TM M.
Question: Does M halt on all inputs?

Example 27 (CF Equivalence Problem)

Input: Two context-free grammars G1,G2.
Question: Does L(G1) = L(G2)?

Example 28 (Finiteness Test)

Input: A finite group presentation (S ,R).
Question: Is the group finite?

Example 29 (Abalian Test)

Input: A finite group presentation (S ,R).
Question: Is the group Abelian?
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TMs and Functions

Definition 30 (Computed Function)

Let M = (Q,Σ, Γ, q0, δ) be an n-TM. We can define the (partial)
function fM : (Σ∗)n ⇀ Σ∗ by its graph:

{(w1, . . . ,wn,w) ∈ (Σ∗)n+1 | ∃γ1, . . . , γn, γ
′
1, . . . , γ

′
n ∈ Γ∗,w ∈ Σ∗,

(q0w1, . . . , q0wn, qn) `∗M (γ1haγ
′
1, . . . , γnhaγ

′
n,wha)}.

If the machine does something other than finish in one of the prescribed
configurations, then we say the function is undefined at that value.

Definition 31 (Characteristic Function)

The characteristic function of a language L ⊆ Σ∗ is the total function
χL : Σ∗ → {wa,wr} where wa,wr ∈ Σ∗ are two distinct strings and
∀w ∈ Σ∗, χL(w) = wa iff w ∈ L.

Proposition 32

L ⊆ Σ∗ is recursive iff its characteristic function is computable.
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Encoding Numbers

Anyone who studied a logic course will be aware of Gödel numberings: a
way to identify logical sentences with numbers. Similarly, we can do this
with strings over an arbitrary an alphabet, and vice versa.

Definition 33 (Bijective Standard Numbering)

For a given alphabet Σ = {a1, . . . , an}, define the numbering
υΣ : N→ Σ∗ by υ−1

Σ (ε) = 0 and υ−1
Σ (aik · · · ai0 ) = ik · nk + · · ·+ i0 · n0.

Definition 34 (Computable Function)

Call a (partial) function f : N⇀ N computable iff υΣ ◦ f ◦ υ−1
Σ is

computable (and correspondingly for f : Nm ⇀ N).

Example 35

1 The projection functions are computable.

2 The Cantor pairing function is computable.
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Church-Turing Thesis

Definition 36 (Church-Turing Thesis)

The Church-Turing Thesis says that a function on the natural numbers
can be calculated by an effective method iff it is computable by a Turing
machine. That is, Turing Machine can compute anything that can be
computed in finite time, given finite input.

The Church-Turing thesis cannot be “proved”: it is a philosophical
standpoint (much like most of us believe the continuum hypothesis).
However, there is compelling evidence for the Thesis (enough to convince
the originally skeptical Gödel)...

Theorem 37 (Church (1936), Turing (1937))

A function on the natural numbers is computable (in the sense we have
defined) iff it is general recursive (a notion of Gödel, 1933) iff it is
λ-computable (a notion of Church 1936).
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Beyond Countable

Everything we have seen so far only details with functions on countable
domains. Kleene, Church, Turing were also particularly aware of this issue
in the 1930s when notion of recursive functions on the naturals were
being developed. Turing first developed a notation of computable real
numbers in 1936.

Even now, there is no generally accepted definition of computability on
the real numbers (and other). I will be following Wihrauch (2000)’s view
on the subject (but not necessarily all their notation), which is based on
their own work, rooted in the definition of computable real functions
based on the work by Grzegoizyk (1955) and Hauck (1973, 1978, 1980,
1981, 1982).

We (Wihrauch) call this theory Type-2 Theory of Effectivity (TTE), and
the corresponding machines Type-2 Machines. The study of such
machine models is called Computable Analysis.
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Computable Analysis

Some basic questions computable analysis wants to formalise and ask are:

1 Is the exponential function computable?

2 Are union and intersection of closed subsets of the real plane
computable?

3 Are differentiation and integration computable operators?

4 Is zero-finding for complex polynomials computable?

In their 1996 paper “Complexity and Real Computation: A Manifesto”,
Blum, Cucker, Shub and Smale say:
Our perspective is to formulate the laws of computation. Thus, we write not from the
point of view of an engineer who looks for a good algorithm [. . . ]. The perspective is
more that of a physicist, truing to understand the laws of scientific computation [. . . ]

There is a substantial conflict between theoretical computer science and numerical
analysis. These two subjects with common goals have grown apart. [. . . ]

The conflict has its roots in another age-old conflict, that between the continuous and
the discrete [. . . ] Algorithms are primarily a means to solve practical problems. There
is not even a formal definition of algorithm in the subject [of numerical analysis]. [. . . ]
Thus, we view numerical analysis as an eclectic subject with weak foundations; this
certainly in no way denies the great achievements through the centuries.
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Infinite Words

A real number cannot be described by finite data, and so our current
model of finite sequences of symbols as machine input will not suffice.
We need to name real numbers using infinite sequences of symbols.

Definition 38 (Infinite String)

Define Σω = {p | p : N→ Σ} to be all infinite sequences over Σ.

Definition 39 (Naming System)

A naming system of a set M is a surjective function υ : Y ⇀ M where
Y ∈ Σ∗,Σω. We say that p ∈ Y is a υ-name of x ∈ M iff υ : Y ⇀ M is
a naming system and υ(p) = x .

We have already seen a naming system for the natural numbers in Σ∗.
Leaving the countable setting. It will turn out that different naming
systems will induce different computability theories (no time for all the
detail), but I will give a concrete example at the end...
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Towards Type-2 Machines

Recall our definition of a Turing Machine had n one-way read-only input
tapes, and a single output tape. Without increasing power, we could add
k additional unrestricted tapes, called “work tapes” (it is possible to
simulate them on a single tape).

If we insist now that our output tape cannot move backwards, and after
writing a non-blank symbol, it must immediately move forwards, so long
as we have at least one work tape, we have not decreased our power (if
we don’t have a work tape, we have just become a (multi-input) FSA).

So, we have an some inputs that are read in order, and an output that is
written in order and once each symbol is written, it cannot be changed.
This is going to be perfect for modifying our machine definition to handle
infinite length inputs and outputs. The idea is that machines can still
only run for finite time, but we’d like for them to converge on the answer.
The more time we give them, the more precise an answer they provide us
with, and they cannot change their mind about what they wrote before.
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Type-2 Machines

Definition 40 (Type-2 Machines)

A Type-2 Machine is an n-TM M together with a type specification
(Y1, . . . ,Yn,Y0) with Yi ∈ {Σ∗,Σω} (0 ≤ i ≤ n), giving the type for
each input tape and the output tape.

Definition 41 (Computed Function)

We can now define the string function fM : Y1 × · · · × Yn ⇀ Y0

computed by a Type-2 Machine M. The initial tape configuration for
input (y1, . . . , yn) is given in the obvious way. We define:

1 Case Y0 = Σ∗ : fM(y1, . . . , yn) := y0 ∈ Σ∗ iff M halts on input
(y1, . . . , yn) and writes y0 on the output tape.

2 Case Y0 = Σω : fM(y1, . . . , yn) := y0 ∈ Σω iff M computes forever
on input (y1, . . . , yn) and writes y0 on the output tape.
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Computability Refines Continuity

Roughly speaking, the finiteness property says that, given a Type-2
Machine M such that fM : Σω ⇀ Σω, every finite portion of the output
fM(p) is already determined by a finite portion of the input p.

The finiteness property is equivalent to continuity of fM if we consider
the Cantor topology on Σω.

Theorem 42

Every computable string function f : Y ⇀ Y0 is continuous in discrete
topology when Y = Σ∗ and in the Cantor topology when Y = Σ∗.

Proof : If u ∈ Σ∗ with u v fM(p), then on input p, the machine M
writes the prefix u of the output fM(p) in t steps for some t ∈ N. Within
t steps, M can read not more than the prefix w := p<t of the input
p ∈ Σω. Therefore, the output of u depends only on the prefix w v p,
that is, fM(wΣω) ⊆ uΣω (continuity at the point p).

This generalises to arbitrarily typed machines using the product topology.
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Decidable Sets

In TTE there is a distinction between recursive and decidable sets. We
don’t have time for their definition of recursive sets, but we can look at
decidable sets, which are easy to define from what we have, and have a
slick characterisation.

Definition 43

We call A ⊆ Σω decidable iff its characteristic function is computable.

Theorem 44

Let X ⊆ Σω. Then, the following are equivalent statements:

1 X is decidable;

2 X is clopen (in the Cantor topology);

3 X = AΣω for some finite set A ⊆ Σ∗.

Proof: Compactness...
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Decimal Fractions

You learned at school that every real number could be represented by an
infinite decimal fraction. That is, an infinite string in

N := ({1, . . . , 9}{0, . . . , 9}∗ ∪ {0}){.}{0, . . . , 9}ω.

Definition 45 (R Naming System I)

The obvious surjection N → R is a naming system for R.

Proposition 46

No Type-2 machine computes the real function f (x) = 3 · x using the
above naming system.

A computability concept under which multiplication by a constant is not
computable, is not every useful!
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A Better Naming System

Definition 47 (R Naming System II)

Define a name of a real number x ∈ R to be a sequence (I0, I1, . . . ) of
closed rational intervals [a, b] (a < b, a, b ∈ Q) (formally, we can encode
rational intervals using Cantor pairing followed by the standard
numbering) such that In+1 ≤ In for all n ∈ N and

⋂
n∈N = {x}.

Proposition 48

Real multiplication (x , y) 7→ x · y is computable using the above naming
system.

Proposition 49

Every computable real function using the above naming system is
continuous in the standard topology on R.
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