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Unlabelled Graphs I

Definition 1

We can formally define a concrete graph as:

G = (V ,E , s : E → V , t : E → V )

where V is a finite set of vertices, E is a finite set of edges. We call
s : E → V the source function, and t : E → V the target function.

Example: G = ({1, 2, 3}, {a, b, c , d}, s, t) where
s = {(a, 1), (b, 2), (c , 3), (d , 3)}, t = {(a, 2), (b, 1), (c , 1), (d , 3)}.

31 2

Definition 2

A graph morphism g : G → H is a pair (gV : VG → VH , gE : EG → EH)
such that sources and targets are preserved. That is, ∀e ∈ EG , gV (sG (e))
= sH(gE (e)) and gV (tG (e)) = tH(gE (e)).
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Unlabelled Graphs II

Definition 3

A graph morphism g : G → H is injective/surjective iff both gV and gE
are injective/surjective as functions. We say g is an isomorphism iff it is
both injective and surjective.

G = 1 2 H = 1 23

There are four morphisms G → H, three of which are injective, none of
which are surjective. There are actually also four morphisms H → G ,
three of which are surjective.

Definition 4

We say that graphs G ,H are isomorphic iff there exists a graph
isomorphism g : G → H, and we write G ∼= H. This naturally gives rise
to equivalence classes [G ], called abstract graphs.
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Labelled Graphs I

Definition 5

A label alphabet L = (LV ,LE ) consists of finite sets of node labels LV

and edge labels LE .

Definition 6

A concrete labelled graph over a label alphabet L is a tuple
G = (V ,E , s, t, l ,m, p) where:

1 V is a finite set of vertices;

2 E is a finite set of edges;

3 s : E → V is a source function;

4 t : E → V is a target function;

5 l : V → LV is the node labelling function;

6 m : E → LE is the edge labelling function;
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Labelled Graphs II

For morphisms between labelled graphs, we require that labels are
preserved: ∀v ∈ VG , lG (v) = lH(gV (v)) and
∀e ∈ EG , mG (e) = mH(gE (e)).

EG VG

LE LV

EH VH

sG
tG

gE

mG

gV

lG

sH
tH

mH

lH

Definition 7

Given a common alphabet L, we say H is a subgraph of G iff there
exists an inclusion morphism H ↪→ G . This happens iff VH ⊆ VG ,
EH ⊆ EG , sH = sG|EH

, tH = tG|EH
, lH = lG|VH

, mH = mG|EH
.
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Rules

Let L = (LV ,LE ) be the ambient label alphabet, and graphs be
concrete.

Definition 8

A rule r = 〈L← K → R〉 consists of labelled graphs L, K , R over L,
and inclusions K ↪→ L and K ↪→ R.

Definition 9

We define the inverse rule to be r−1 = 〈R ← K → L〉.

Definition 10

If r = 〈L← K → R〉 is a rule, then |r | = max{|L|, |R|}, where the size
of a graph G is |G | = |VG |+ |EG |.
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Rule Application

Definition 11

Given a rule r = 〈L← K → R〉 and a labelled graph G , we say that an
injective morphism g : L ↪→ G satisfies the dangling condition iff no
edge in G \ g(L) is incident to a node in g(L \ K ).

Definition 12

To apply a rule r to some labelled graph G , find an injective graph
morphism g : L ↪→ G satisfying the dangling condition, then:

1 Delete g(L \ K ), giving the intermediate graph D;

2 Add disjointly R \ K to D, giving the result graph H.

If the dangling condition fails, the rule is not applicable using match g .
We can exhaustively check all matches to determine applicability.
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Direct Derivations

Definition 13

We write G ⇒r ,g M for a successful application of r to G using match g ,
obtaining result M ∼= H. We call this a direct derivation.

Theorem 14 (Derivation Uniqueness)

It turns out that deletions are natural pushout complements and
gluings are natural pushouts in the category of labelled graphs.
Moreover, direct derivations are natural double pushouts, D and H are
unique up to isomorphism, and derivations G ⇒r ,g H are invertible.

Definition 15

For a given set of rules R, we write G ⇒R H iff H is directly derived
from G using any of the rules from R.
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Graph Transformation

Definition 16

A graph transformation system (GT system) is a pair T = (L,R)
where L is a label alphabet and R is a finite set of rules.

Definition 17

Let L be some fixed label alphabet. Then we let G(L) be the countable
set of all labelled abstract graphs.

Definition 18

Let T = (L,R) be a GT system. Then (G(L),→R) is the induced ARS
defined by ∀[G ], [H] ∈ G(L), [G ]→R [H] iff G ⇒R H.

Lemma 19

Consider the ARS (G(L),→) induced by a GTS. Then → is a binary
relation on G(L) (that is, it is both well-defined and closed). Moreover,
it is finitely branching and decidable.

Graham Campbell
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Graph Grammars

Definition 20

Given a GT system T = (L,R), a subalphabet of non-terminals N ,
and a start graph S over L, then a graph grammar is the system
GGG = (L,N ,R,S).

Definition 21

Given a graph grammar GGG as defined above, we say that a graph G is
terminally labelled iff l(V ) ∩NV = ∅ and m(E ) ∩NE = ∅. Thus, we
can define the graph language generated by GGG :

LLL(GGG ) = {[G ] | [S ]→∗R [G ],G terminally labelled}

Theorem 22 (Membership Test)

Given a grammar GGG = (L,N ,R,S), [G ] ∈ LLL(GGG ) iff [G ]→∗R−1 [S ] and G
is terminally labelled.

Graham Campbell
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TREE Language

Let TREETREETREE = (L,N ,S ,R) where:

1 L = ({�}, {�}) where � denotes the empty label;

2 N = (∅, ∅);

3 S be the graph with a single node labelled with �;

4 R = {r}.

r : � ← � → � �
1 1 1

�

To see that this grammar generates the set of all trees, we must show
that every graph in the language is a tree, and then that every tree is in
the language. This is easy to see by induction.

One can see (via critical pair analysis) that TREE−1 = (L, {r−1}) is
confluent too... QUEUE WAFFLE

Graham Campbell
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Time Complexity

Given a GT system, how long does it take to compute a normal form of
an input graph?

Definition 23 (Graph Matching Problem (GMP))

Given a graph G and a rule r = 〈L← K → R〉, find the set of injective
graph morphisms L→ G .

Definition 24 (Rule Application Problem (RAP))

Given a graph G , a rule r = 〈L← K → R〉, and an injective match
g : L→ G , find the result graph H. That is, does it satisfy the “dangling
condition”, and if it does, construct H.

Lemma 25

The GMP requires O(|G ||L|) time. The RAP requires O(|r |) time.

Graham Campbell
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Root Nodes I

What if we were to limit our search area of the host graph?

Introduce “root” nodes into the rules, and match them in the host graph.
This idea was first proposed by Dörr (1995) and was implemented by Bak
and Plump in 2015 by “pointing” a graph with a set of root nodes.

That is, if G is a (partially) labelled graph, then (G ,PG ) is a rooted
(partially) labelled graph, where PG ⊆ VG .

Morphisms between these pointed structures are then required to be
“rootedness preserving”. That is, if g : G → H, then PG ⊆ g−1

V (PH).

BUT... what goes wrong...

Graham Campbell
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Root Nodes II

We can no longer use natural DPOs as our definition of rule application!
Worse still, derivations are no longer reversible!

A way out?

What if we have a rootedness function, which can decide if a node is
“unrooted”, “rooted”, or has “undefined rootedness”.

Our graph morphisms would then need to more strongly preserve
rootedness of nodes. That is, and unrooted node can no longer be
mapped to a rooted node. Only a node of undefined rootedness can be
changed... Rather similar to the trick with partial labelling.

Graham Campbell
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Rooted Graphs

Definition 26

A graph over L is a tuple G = (V ,E , s, t, l ,m, p) where:

1 V is a finite set of vertices;

2 E is a finite set of edges;

3 s : E → V is a total source function;

4 t : E → V is a total target function;

5 l : V → LV is a partial function, labelling the vertices;

6 m : E → LE is a total function, labelling the edges;

7 p : V → Z2 is a partial function, determining vertex rootedness.

Definition 27

A graph G is totally labelled iff lG is total, and totally rooted if pG is
total. If G is both, then we call it a TLRG.
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Rooted Morphisms

Definition 28

A graph morphism between graphs G and H is a pair of functions
g = (gV : VG → VH , gE : EG → EH) such that sources, targets, labels,
and rootedness are preserved. That is:

1 ∀e ∈ EG , gV (sG (e)) = sH(gE (e));

2 ∀e ∈ EG , gV (tG (e)) = tH(gE (e));

3 ∀e ∈ EG mG (e) = mH(gE (e));

4 ∀v ∈ l−1
G (LV ), lG (v) = lH(gV (v));

5 ∀v ∈ p−1
G (Z2), pG (v) = pH(gV (v)).

All of the other theory we’ve seen for the standard case also holds...
transformation occurs on the TLRGs with K partially labelled and
partially rooted.
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Complexity Theorems I

Definition 29

We call a rule r = 〈L← K → R〉 fast iff every connected component
of L contains a root node.

Theorem 30 (Fast Derivations)

Given a TLRG G of bounded degree containing a bounded number of
root nodes, and a GT system T = (L,R) where each rule is fast, then
one can decide in constant time the direct successors of [G ].

Corollary 31

If each rule is additionally root non-increasing and degree
non-increasing, and T terminating with maximum derivation length
N ∈ N, then one can find a normal form of [G ] in O(N) time.

Graham Campbell

Efficient Graph Rewriting



Graphs and Labelling Graph Transformation Efficient Rewriting Confluence Analysis

Complexity Theorems I

Definition 29

We call a rule r = 〈L← K → R〉 fast iff every connected component
of L contains a root node.

Theorem 30 (Fast Derivations)

Given a TLRG G of bounded degree containing a bounded number of
root nodes, and a GT system T = (L,R) where each rule is fast, then
one can decide in constant time the direct successors of [G ].

Corollary 31

If each rule is additionally root non-increasing and degree
non-increasing, and T terminating with maximum derivation length
N ∈ N, then one can find a normal form of [G ] in O(N) time.

Graham Campbell

Efficient Graph Rewriting



Graphs and Labelling Graph Transformation Efficient Rewriting Confluence Analysis

Complexity Theorems I

Definition 29

We call a rule r = 〈L← K → R〉 fast iff every connected component
of L contains a root node.

Theorem 30 (Fast Derivations)

Given a TLRG G of bounded degree containing a bounded number of
root nodes, and a GT system T = (L,R) where each rule is fast, then
one can decide in constant time the direct successors of [G ].

Corollary 31

If each rule is additionally root non-increasing and degree
non-increasing, and T terminating with maximum derivation length
N ∈ N, then one can find a normal form of [G ] in O(N) time.

Graham Campbell

Efficient Graph Rewriting



Graphs and Labelling Graph Transformation Efficient Rewriting Confluence Analysis

Recognising Trees I

Let L = ({�,4}, {�}), and R = {r0, r1, r2}.

r0: � � ← → �
1 1 1

�

r1: 4 � ← → �
1 1 1

�

r2: � � ← → 4 �
1 2 1 2 1 2

� �

Intuitively, this works by pushing the “root” to the bottom of a branch,
and then pruning. If we start with a tree and run this until we cannot do
it anymore, we must be left with a single node.

The triangle labels are necessary so that, in the case that the input graph
is not a tree, we could “get stuck” in a directed cycle.

Graham Campbell
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Recognising Trees II

Definition 32

Given a graph G , we define G	 to be exactly G , but with every node
unrooted, and everything labelled by �. That is,
G	 = (VG ,EG , sG , tG ,VG × {�},EG × {�},VG × {0}).

Definition 33

By “input graph”, we mean any TLRG containing exactly one “root”
node, with edges and vertices all labelled by �.

Theorem 34 (Tree Recognition)

Given an input graph G , one may use the system (L,R) from G to find a
normal form for G , say H. H is the single root-node graph labelled by �
iff [G	] ∈ LLL(TREE ). Moreover, for input graphs of bounded degree, we
terminate in linear time (with respect to |VG |).
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Motivation

Notice in the rooted tree example that every pair H1 ⇐ G ⇒ H2 where G
was a tree can be joined, but this is not necessarily true of any G in
general, so we don’t have local confluence.

We only need to have joinability of pairs with non-garbage start graphs...

Definition 35

Let T = (L,R) be a GT system, and D ⊆ G(L) be a set of abstract
graphs. Then, a graph G is called garbage iff [G ] 6∈ D.

Definition 36

Let T = (L,R), and D ⊆ G(L). T is weakly garbage separating w.r.t.
D iff for all G , H such that G ⇒R H, if [G ] ∈ D then [H] ∈ D. T is
garbage separating iff we have [G ] ∈ D iff [H] ∈ D.
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Confluence Modulo Garbage

Definition 37

Let T = (L,R), D ⊆ G(L). If for all graphs G , H1, H2, such that
[G ] ∈ D, if H1 ⇐∗R G ⇒∗R H2 (H1 ⇐R G ⇒R H2) implies that H1, H2

are joinable, then T is (locally) confluence modulo garbage w.r.t. D.

Definition 38

Let T = (L,R), D ⊆ G(L). If there is no infinite derivation sequence
G0 ⇒R G1 ⇒R G2 ⇒R · · · such that [G0] ∈ D, then T is terminating
modulo garbage w.r.t. D.

Theorem 39 (Newman-Garbage Lemma)

Let T = (L,R), D ⊆ G(L). If T is terminating modulo garbage and
weakly garbage separating, then it is confluent modulo garbage iff it
is locally confluent modulo garbage.
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Tree Recognition Revisited

Let L = ({�,4}, {�}), R = {r0, r1, r2}.

r0: � � ← → �
1 1 1

�

r1: 4 � ← → �
1 1 1

�

r2: � � ← → 4 �
1 2 1 2 1 2

� �

Lemma 40

The GT system T = (L,R) is garbage separating w.r.t. to
D = {[G ] ∈ G⊕(L) | [G	] ∈ LLL(TREETREETREE ), |p−1

G ({1})| = 1} and confluent
modulo garbage w.r.t. E = {[G ] ∈ D | lG (VG ) = {�}}.
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Showing Confluence

It is well known that for totally labelled systems (that is, the interface
graph K is totally labelled), that it is sufficient (but not necessary) to
check “strong joinability” of “critical pairs”.

It turns out it’s enough to check strong joinability of only the critical
pairs which have start graph in the subgraph closure of D.

Theorem 41 (Non-Garbage Critical Pair Lemma)

Let T = (L,R), D ⊆ G(L). If all its non-garbage critical pairs are
strongly joinable, then T is locally confluent mod garbage w.r.t. D.

Corollary 42

Let T = (L,R), D ⊆ G(L). If T is terminating modulo garbage,
weakly garbage separating, and all its non-garbage critical pairs are
strongly joinable then T is confluent modulo garbage.

Graham Campbell

Efficient Graph Rewriting



Graphs and Labelling Graph Transformation Efficient Rewriting Confluence Analysis

Showing Confluence

It is well known that for totally labelled systems (that is, the interface
graph K is totally labelled), that it is sufficient (but not necessary) to
check “strong joinability” of “critical pairs”.

It turns out it’s enough to check strong joinability of only the critical
pairs which have start graph in the subgraph closure of D.

Theorem 41 (Non-Garbage Critical Pair Lemma)

Let T = (L,R), D ⊆ G(L). If all its non-garbage critical pairs are
strongly joinable, then T is locally confluent mod garbage w.r.t. D.

Corollary 42

Let T = (L,R), D ⊆ G(L). If T is terminating modulo garbage,
weakly garbage separating, and all its non-garbage critical pairs are
strongly joinable then T is confluent modulo garbage.

Graham Campbell

Efficient Graph Rewriting



Graphs and Labelling Graph Transformation Efficient Rewriting Confluence Analysis

Showing Confluence

It is well known that for totally labelled systems (that is, the interface
graph K is totally labelled), that it is sufficient (but not necessary) to
check “strong joinability” of “critical pairs”.

It turns out it’s enough to check strong joinability of only the critical
pairs which have start graph in the subgraph closure of D.

Theorem 41 (Non-Garbage Critical Pair Lemma)

Let T = (L,R), D ⊆ G(L). If all its non-garbage critical pairs are
strongly joinable, then T is locally confluent mod garbage w.r.t. D.

Corollary 42

Let T = (L,R), D ⊆ G(L). If T is terminating modulo garbage,
weakly garbage separating, and all its non-garbage critical pairs are
strongly joinable then T is confluent modulo garbage.

Graham Campbell

Efficient Graph Rewriting



Graphs and Labelling Graph Transformation Efficient Rewriting Confluence Analysis

Showing Confluence

It is well known that for totally labelled systems (that is, the interface
graph K is totally labelled), that it is sufficient (but not necessary) to
check “strong joinability” of “critical pairs”.

It turns out it’s enough to check strong joinability of only the critical
pairs which have start graph in the subgraph closure of D.

Theorem 41 (Non-Garbage Critical Pair Lemma)

Let T = (L,R), D ⊆ G(L). If all its non-garbage critical pairs are
strongly joinable, then T is locally confluent mod garbage w.r.t. D.

Corollary 42

Let T = (L,R), D ⊆ G(L). If T is terminating modulo garbage,
weakly garbage separating, and all its non-garbage critical pairs are
strongly joinable then T is confluent modulo garbage.

Graham Campbell

Efficient Graph Rewriting



Graphs and Labelling Graph Transformation Efficient Rewriting Confluence Analysis

Extended Flow Diagrams I

The language of extended flow diagrams is generated by
EFDEFDEFD = (L,N ,R,S) where LV = {•,�, �}, LE = {t, f ,�},
NV = NE = ∅, R = {seq,while, ddec , dec1, dec2}, and S = .
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Extended Flow Diagrams II

Lemma 43

EFD−1 = (L,R−1) is terminating. Moreover, it is garbage separating
w.r.t. LLL(EFDEFDEFD).

Lemma 44

Every directed cycle in a graph in the subgraph closure of LLL(EFDEFDEFD)
contains a t-labelled edge.

Theorem 45 (EFD Recognition)

EFD−1 = (L,R−1) is confluent modulo garbage w.r.t. LLL(EFDEFDEFD), but
not confluent.
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Extended Flow Diagrams III

By Lemma 43 and the Newman-Garbage Lemma, it suffices to show local
confluent modulo garbage. Consider the critical pairs of the system. It
turns out there are ten critical pairs, all but one of which are strongly
joinable.

Thus, we do not have confluence, however by Lemma 44, the
non-joinable critical pair is garbage, so by the Non-Garbage Critical Pair
Lemma, we have local confluence modulo garbage, as required.
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