
Linear-Time Graph Algorithms in GP 21

Graham Campbell2

Department of Computer Science, University of York, United Kingdom3

https://gjcampbell.co.uk/4

gjc510@york.ac.uk5

Brian Courtehoute6

Department of Computer Science, University of York, United Kingdom7

https://www.cs.york.ac.uk/people/brianc8

bc956@york.ac.uk9

Detlef Plump10

Department of Computer Science, University of York, United Kingdom11

https://www-users.cs.york.ac.uk/det/12

detlef.plump@york.ac.uk13

Abstract14

GP2 is an experimental programming language based on graph transformation rules which aims to15

facilitate program analysis and verification. However, implementing graph algorithms efficiently in a16

rule-based language is challenging because graph pattern matching is expensive. GP 2 mitigates this17

problem by providing rooted rules which, under mild conditions, can be matched in constant time.18

In this paper, we present linear-time GP2 programs for three problems: tree recognition, binary19

DAG recognition, and topological sorting. In each case, we show the correctness of the program,20

prove its linear time complexity, and also give empirical evidence for the linear run time. For DAG21

recognition and topological sorting, the linear behaviour is achieved by implementing depth-first22

search strategies based on an encoding of stacks in graphs.23

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms24

Keywords and phrases Graph transformation; rooted graph programs; GP2; linear-time algorithms;25

depth-first search; topological sorting26

Digital Object Identifier 10.4230/LIPIcs.CALCO.2019.2327

1 Introduction28

Rule-based graph transformation was established as a research field in the 1970s and has29

since then been the subject of countless articles. While many of these contributions have a30

theoretical nature (see the monograph [8] for a recent overview), there has also been work on31

languages and tools for executing and analysing graph transformation systems.32

Languages based on graph transformation rules include AGG [17], GReAT [1], GROOVE33

[10], GrGen.Net [12], Henshin [3] and PORGY [9]. This paper focuses on GP2 [13], an34

experimental graph programming language which aims to facilitate formal reasoning on35

programs. The language has a simple formal semantics and is computationally complete36

in that every computable function on graphs can be programmed [14]. Research on graph37

programs has provided, for example, a Hoare-calculus for program verification [15, 16] and a38

static analysis for confluence checking [11].39

A challenge for the design and implementation of graph transformation languages is to40

narrow the performance gap between imperative and rule-based graph programming. The41

bottleneck for achieving fast graph transformation is the cost of graph matching. In general,42

matching the left-hand graph L of a rule within a host graph G requires time size(G)size(L)
43

(which is polynomial since L is fixed). As a consequence, linear-time imperative graph44

algorithms may be slowed down to polynomial time when they are recast as rule-based graph45

© Graham Campbell, Brian Courtehoute and Detlef Plump;
licensed under Creative Commons License CC-BY

8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).
Editors: Markus Roggenbach and Ana Sokolova; Article No. 23; pp. 23:1–23:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6767-2747
https://gjcampbell.co.uk/
mailto:gjc510@york.ac.uk
https://orcid.org/0000-0002-7736-4852
https://www.cs.york.ac.uk/people/brianc
mailto:bc956@york.ac.uk
https://orcid.org/0000-0002-1148-822X
https://www-users.cs.york.ac.uk/det/
mailto:detlef.plump@york.ac.uk
https://doi.org/10.4230/LIPIcs.CALCO.2019.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Linear-Time Graph Algorithms in GP 2

programs. To mitigate this problem, GP2 allows to distinguish nodes as roots and to match46

roots in rules with roots in host graphs. Then only the neighbourhood of host graph roots47

needs to be searched for matches, allowing, under mild conditions, to match rules in constant48

time.49

In [5], fast rules were identified as a class of rooted rules that can be applied in constant50

time if host graphs have a bounded node degree and contain a bounded number of roots.51

A graph program with fast rules was shown in [6] to 2-colour graphs of bounded degree in52

linear time. The compiled program matches the speed of Sedgewick’s textbook C program53

[18] on grid graphs of up to 100,000 nodes.54

In this paper, we continue this line of research with case studies on three linear-time55

graph algorithms: recognition of trees, recognition of binary DAGs, and topological sorting.56

In each case, we present a GP2 program with fast rules, show its correctness, and prove its57

linear time complexity on graphs of bounded node degree. We also give empirical evidence58

for the linear run time by presenting benchmark results for graphs of up to 100,000 nodes in59

various graph classes. For DAG recognition and topological sorting, the linear behaviour is60

achieved by implementing depth-first search strategies based on an encoding of stacks.61

2 The Graph Programming Language GP 262

This section briefly introduces GP2, a non-deterministic language based on graph-transfor-63

mation rules, first defined in [13]. Up-to-date versions of the syntax and semantics of GP264

can be found in [4]. The language is implemented by a compiler generating C code [6].65

2.1 Graphs, Rules and Programs66

GP2 programs transform input graphs into output graphs, where graphs are directed and67

may contain parallel edges and loops. Both nodes and edges are labelled with lists consisting68

of integers and character strings. This includes the special case of items labelled with the69

empty list which my be considered as “unlabelled”.70

The principal programming construct in GP2 are conditional graph transformation rules71

labelled with expressions. For example, the rule one_of_one in Figure 10 has four formal72

parameters of type list, a left-hand graph and a right-hand graph which are specified73

graphically, and a textual condition starting with the keyword where.74

The small numbers attached to nodes are identifiers, all other text in the graphs are75

labels. Parameters are typed but in this paper we only need the most general type list76

which represents arbitrary lists.77

Besides carrying expressions, nodes and edges can be marked red, green or blue. In78

addition, nodes can be marked grey and edges can be dashed. For example, rule one_of_one79

in Figure 10 contains red and blue nodes and a blue edge. Marks are convenient, among other80

things, to record visited items during a graph traversal and to encode auxiliary structures in81

graphs. The programs in the following sections use marks extensively.82

Rules operate on host graphs which are labelled with constant values (lists containing83

integer and string constants). Applying a rule L ⇒ R to a host graph G works roughly84

as follows: (1) Replace the variables in L and R with constant values and evaluate the85

expressions in L and R, to obtain an instantiated rule L̂⇒ R̂. (2) Choose a subgraph S of86

G isomorphic to L̂ such that the dangling condition and the rule’s application condition are87

satisfied (see below). (3) Replace S with R̂ as follows: numbered nodes stay in place (possibly88

relabelled), edges and unnumbered nodes of L̂ are deleted, and edges and unnumbered nodes89

of R̂ are inserted.90

G.Campbell, B. Courtehoute and D. Plump 23:3

In this construction, the dangling condition requires that nodes in S corresponding to91

unnumbered nodes in L̂ (which should be deleted) must not be incident with edges outside92

S. The rule’s application condition is evaluated after variables have been replaced with the93

corresponding values of L̂, and node identifiers of L with the corresponding identifiers of S.94

For example, the condition indeg(1) = 1 of rule one_of_one in Figure 10 requires that node95

g(1) has exactly one incoming edge, where g(1) is the node in S corresponding to 1.96

A program consists of declarations of conditional rules and procedures, and exactly one97

declaration of a main command sequence. Procedures must be non-recursive, they can be98

seen as macros. We describe GP2’s main control constructs.99

The call of a rule set {r1, . . . , rn} non-deterministically applies one of the rules whose100

left-hand graph matches a subgraph of the host graph such that the dangling condition and101

the rule’s application condition are satisfied. The call fails if none of the rules is applicable102

to the host graph.103

The command if C then P else Q is executed on a host graph G by first executing C104

on a copy of G. If this results in a graph, P is executed on the original graph G; otherwise,105

if C fails, Q is executed on G. The try command has a similar effect, except that P is106

executed on the result of C’s execution.107

The loop command P ! executes the body P repeatedly until it fails. When this is the108

case, P ! terminates with the graph on which the body was entered for the last time. The109

break command inside a loop terminates that loop and transfers control to the command110

following the loop.111

In general, the execution of a program on a host graph may result in different graphs,112

fail, or diverge. The operational semantics of GP2 defines a semantic function which maps113

each host graph to the set of all possible outcomes. See, for example, [14].114

2.2 Rooted Programs115

The bottleneck for efficiently implementing algorithms in a language based on graph trans-116

formation rules is the cost of graph matching. In general, to match the left-hand graph L of a117

rule within a host graph G requires time polynomial in the size of L [5, 6]. As a consequence,118

linear-time graph algorithms in imperative languages may be slowed down to polynomial119

time when they are recast as rule-based programs.120

To speed up matching, GP2 supports rooted graph transformation where graphs in rules121

and host graphs are equipped with so-called root nodes. Roots in rules must match roots in122

the host graph so that matches are restricted to the neighbourhood of the host graph’s roots.123

We draw root nodes using double circles. For example, in the rule prune of Figure 2, the124

node labelled y in the left-hand side and the single node in the right-hand side are roots.125

A conditional rule 〈L⇒ R, c〉 is fast if (1) each node in L is undirectedly reachable from126

some root, (2) neither L nor R contain repeated list, string or atom variables, and (3) the127

condition c contains neither an edge predicate nor a test e1=e2 or e1!=e2 where both e1 and128

e2 contain a list, string or atom variable.129

Conditions (2) and (3) will be satisfied by all rules occurring in the following sections; in130

particular, we neither use the edge predicate nor the equality tests. For example, the rules131

prune and push in Figure 2 are fast rules.132

I Theorem 1 (Complexity of matching fast rules [5]). Rooted graph matching can be imple-133

mented to run in constant time for fast rules, provided there are upper bounds on the maximal134

node degree and the number of roots in host graphs.135

CALCO 2019

23:4 Linear-Time Graph Algorithms in GP 2

When analysing the time complexity of rules and programs, we assume that these are136

fixed. This is customary in algorithm analysis where programs are fixed and running time is137

measured in terms of input size [2, 19]. In our setting, the input size is the size of a host138

graph. The implementation of GP2 does match fast rooted rules in constant time [6].139

3 Recognising Trees140

A tree is a connected graph without undirected cycles such that every node has at most one141

incoming edge. It is easy to see that it is possible to generate the collection of all non-empty142

trees by inductively adding new leaf nodes onto the discrete graph of size one. Thus, given143

an input graph, if we prune leaf nodes as long as possible and end up with the discrete graph144

of size one, then the start graph must have been a tree. Figure 1 is implementation of this145

idea in GP2.146

Main = not_empty; prune!; if Check then fail
Check = {two_nodes, has_loop}

not_empty(a,x,y:list) prune(a,x,y:list)

x ⇒ x
1 1

x y ⇒ x
1 1

a

two_nodes(x,y:list) has_loop(a,x:list)

x y ⇒ x y
1 2 1 2

x ⇒ x
1 1a a

Figure 1 The GP2 program is-tree-slow

I Definition 2 (Tree recognition specification). The tree recognition specification is as follows.147

Input: An arbitrary labelled graph with every node coloured grey, no root nodes, and no148

other marks.149

Output: Fail if and only if the input is not a non-empty tree.150

I Theorem 3 (Correctness of is-tree-slow). The program is-slow-tree fulfills the tree151

recognition specification.152

Proof. Similar to the proof of Theorem 6. J153

I Proposition 4 (Termination of prune!). prune! terminates after at most |VG| steps.154

Proof. If G⇒ H, then |VG| > |VH |. Suppose there were an infinite sequence of derivations155

G0 ⇒ G1 ⇒ G2 ⇒ · · ·, then there would be an infinite descending chain of natural numbers156

|VG0 | > |VG1 | > |VG2 | > · · ·, which contradicts the well-ordering of N. The last part is157

immediate since there are only VG natural numbers less than VG. J158

I Theorem 5 (Complexity of is-tree-slow). Given an input graph of bounded degree,159

is-tree-slow will terminate in quadratic time with respect to the number of nodes in the160

input graph.161

Proof. Clearly not_empty and Check run in linear time. Unfortunately prune is not a fast162

rule schema, and so it takes linear time to find a match. Finding a match for prune takes163

linear time and so by Proposition 4, prune! terminates in quadratic time. J164

G.Campbell, B. Courtehoute and D. Plump 23:5

Unfortunately, our program does not run in linear time due to our rules not being such165

that we have constant time matching. We need to modify the program so that we can always166

perform a match in constant time. Figure 2 is a refined implementation, using root nodes.167

We will see that this program is not only correct, but always terminates in linear time.168

Main = init; Reduce!; if Check then fail
Reduce = {prune, push}
Check = {two_nodes, has_loop}

init(x:list) two_nodes(x,y:list) has_loop(a,x:list)

x ⇒ x
1 1

x y ⇒ x y
1 2 1 2

x ⇒ x
1 1a a

prune(a,x,y:list) push(a,x,y:list)

x y ⇒ x
1 1

a
x y ⇒ x y
1 2 1 2

a a

Figure 2 The GP2 program is-tree

I Theorem 6 (Correctness of is-tree). The program is-tree fulfills the tree recognition169

specification.170

Proof. The init rule will fail if the input graph is empty, otherwise, it will make exactly one171

node rooted. The Reduce! step derives the singleton discrete graph if and only if the input172

was a tree (Lemmata 16 and 20). Finally, by Lemma 17, Reduce! cannot derive the empty173

graph, so it is sufficient for Check to test if there is more than one node, or a loop edge. J174

I Theorem 7 (Complexity of is-tree). Given an input graph of bounded degree, is-tree175

will terminate in linear time with respect to the number of nodes in the input graph.176

Proof. Clearly init and Check run in linear time. Since push and prune are fast rules, they177

take only constant time (Theorem 1), and then by Lemma 15, Reduce can only be applied a178

linear number of times. Thus, Reduce! terminates in linear time too. J179

(a) Star Graph (b) Grid Graph

(c) Binary Tree (d) Linked List

Figure 3 Types of Graph

We have performed empirical benchmarking to verify the complexity of the program,180

testing it with Linked Lists, Binary Trees, Grid Graphs, and Star Graphs (Figure 3). Star181

CALCO 2019

23:6 Linear-Time Graph Algorithms in GP 2

Graphs are not of bounded degree, so we saw quadratic time complexity as expected. The182

other graphs are of bounded degree, thus we observed linear time complexity (Figure 4).183

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·105

0

0.5

1

1.5

2

2.5

3

3.5

4

Number of nodes in input

Ex
ec
ut
io
n
tim

e
(s
)

Star Graph
Linked List

(a) Star Graphs and Linked Lists

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
·105

0
5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of nodes in input

Ex
ec
ut
io
n
tim

e
(s
)

Linked List
Grid Graph
Binary Tree

(b) Bounded Degree Input Graphs

Figure 4 Measured performance of is-tree

4 Implementing Depth First Search184

The depth first search (DFS) seen in Figure 5 is based on the graph traversal done during185

the GP2 2-colouring program [6]. Due to the nature of GP2, it differs from commonly used186

implementation.187

Main = init; (forward!; try back else break)!

init (x:list) forward (a,x,y:list)

x ⇒ x
1 1

x y ⇒ x y
1 2 1 2

a a

back (a,x,y:list)

x y ⇒ x y
1 2 1 2

a a

Figure 5 The GP2 program general-dfs

Specifically, standard implementations of DFS [7, 19] loop over the nodes of the input188

graph, and if the current node has not been visited yet, a recursive function is called on it.189

Said function marks the node it is called on as visited, and then calls itself on an unvisited190

neighbour on an outgoing edge. If a program does not loop over all the nodes, and just191

applies the recursive function to some node v, only the nodes reachable from v are visited,192

since only outgoing edges are considered at each step. In GP2 however, there is no obvious193

linear-time way to loop over all nodes. So instead, the GP2 program does not require the194

edges to be outgoing, and applies a command sequence analogous to the recursive function195

on an arbitrary node.196

This approach implements DFS in an undirected graph, but not DFS in a directed197

graph. So general-dfs is guaranteed to visit all nodes of the input graph in linear time,198

but not necessarily in the order one might expect from a DFS in a directed graph. A DFS199

implementation that visits the nodes of the input graph in the expected order can be found200

at the core of the GP2 program in Section 6.201

G.Campbell, B. Courtehoute and D. Plump 23:7

The program starts by rooting and marking an arbitrary node red. forward! moves the202

root along a path through the unvisited grey nodes until it reaches a node with no unvisited203

neighbours. This path is marked with dashed edges. Then back is applied, bringing the root204

one step back in the marked path. The program loops until back cannot be applied, which205

is when there is no marked path left, i.e. the root is back at the initially rooted node.206

⇒ ⇒∗ ⇒ ⇒ ⇒∗

Figure 6 Example execution of general-dfs

I Theorem 8 (Correctness and Complexity of general-dfs). Given a connected input graph207

G of bounded degree with grey unrooted nodes and unmarked edges, general-dfs marks all208

nodes red in linear time.209

Proof. Correctness follows from Lemma 22 and complexity from Corollary 24. They are210

partially adapted from Bak’s [4] proofs of correctness and complexity for a different DFS211

program. J212

5 Recognising Binary DAGs213

A directed acyclic graph (DAG) is a graph containing no directed cycles. A DAG is binary if214

each of its nodes has an outdegree of at most two.215

Main = try SearchIndeg0Nodes then (if nonempty_stack then skip else fail;
ReduceIndeg0Nodes); if anything then fail

nonempty_stack (x:list) anything (x:list)

x ⇒ x
1 1

x ⇒ x
1 1

Figure 7 The GP2 Program is-bin-dag

The idea behind recognising connected binary DAGs is as follows. First, all indegree-0216

nodes of the input graph are identified. Then, if any indegree-0 nodes have been found, one217

of them is deleted, and all of its children that become a new indegree-0 node get designated218

as such. This is repeated until no indegree-0 nodes are left. Every time an indegree-0 node is219

checked, the number of its children are checked as well. If there are any leftover nodes (i.e.220

nodes that never had indegree-0 in the execution), then there were no directed cycles, and221

the input graph is a DAG.222

I Theorem 9 (Correctness of is-bin-dag). The program is-bin-dag fulfills the following223

specification.224

Input: A connected graph G with grey unrooted nodes and unmarked edges.225

Output: The empty graph if G minus the blue edges was a binary DAG, and failure226

otherwise.227

Proof. If G is the empty graph, SearchIndeg0Nodes fails by Proposition 10, anything does228

not match, and the output is the empty graph. So assume G is nonempty.229

CALCO 2019

23:8 Linear-Time Graph Algorithms in GP 2

If G has no indegree-0 nodes, nonempty_stack will not match, and fail will be invoked.230

So assume G has indegree-0 nodes.231

Then Propositions 10 and 11 can be applied to deduce the following. SearchIndeg0Nodes232

succeeds, nonempty_stack matches, then ReduceIndeg0Nodes gets applied. If G is a binary233

DAG, the host graph becomes the empty graph, anything will not match, and the output234

is the empty graph. If G is not a binary DAG, there’s failure, or a nonempty graph which235

results in failure since anything is matched. J236

5.1 Correctness of Procedures237

The proof of Theorem 9 depends upon the correctness of the procedures SearchIndeg0Nodes238

and ReduceIndeg0Nodes. We will now give their definitions and prove their correctness.239

I Proposition 10 (Correctness of SearchIndeg0Nodes). The procedure SearchIndeg0Nodes240

fulfills the following specification.241

Input: A connected graph G with grey unrooted nodes and unmarked edges.242

Output: If G is the empty graph, then failure. Otherwise G with red non-indegree-0 nodes243

containing at most one root, and blue indegree-0 nodes that are connected with blue edges244

forming a path graph (i.e. a linked list). The blue node with no incoming blue edges is a245

root.246

Proof. If G is empty, init cannot match, causing failure. Otherwise, the output conditions247

are satisfied by Lemmata 26 and 27. J248

The absence of a red root in the output is an edge case caused by init being applied to249

an indegree-0 node. Because then, either i0_stack or i0_push will be the last rule that is250

applied, and the red root becomes a blue root.251

The blue nodes linked with blue edges are a GP2 implementation of stacks. The top of252

the stack is the only blue root, making it accessible in constant time.253

SearchIndeg0Nodes = init; (i0_forward!; try i0_push else (try i0_stack);
try i0_back_red else (try i0_back_blue else break))!

init (x:list) i0_forward (a,x,y:list)

x ⇒ x
1 1

x y ⇒ x y
1 2 1 2

a a

i0_push (x,y:list) i0_stack (x:list)

x y ⇒ x y
1 2 1 2

where indeg(1)=0

x ⇒ x
1 1

where indeg(1)=0

i0_back_red (a,x,y:list) i0_back_blue (a,x,y:list)

x y ⇒ x y
1 2 1 2

a a
x y ⇒ x y
1 2 1 2

a a

Figure 8 The SearchIndeg0Nodes procedure

SearchIndeg0Nodes, as seen in Figure 8, is based on the DFS implementation from254

Section 4, with a few key differences. Using DFS ensures that each node is visited.255

G.Campbell, B. Courtehoute and D. Plump 23:9

Between the forward and back steps lies the command sequence try i0_push else (try256

i0_stack). Its purpose is to push the node currently visited by the DFS if it has indegree-0.257

If the stack is nonexistent, there are no blue nodes, and i0_push fails. So the program tries258

to apply i0_stack, turning the node into the initial stack element (if its indegree is 0). After259

the stack has been created, i0_push will always be applicable for indegree-0 nodes.260

Since the current node may be marked blue by the stack operations after the previous261

command sequence has been executed, the back step needs to account for that. Hence the262

program first tries to apply the back rule from the previous DFS program, and if that fails,263

it tries to apply an alternate version considering a blue current node. In the latter case, the264

blue node is rooted since we want to keep accessing the top of the stack in constant time.265

⇒ ⇒ ⇒ ⇒ ⇒∗

⇓

⇐∗⇐⇐⇐∗⇐

Figure 9 Example execution of SearchIndeg0Nodes

I Proposition 11 (Correctness of ReduceIndeg0Nodes). The procedure ReduceIndeg0Nodes266

fulfills the following specification.267

Input: A connected graph G with red non-indegree-0 nodes containing at most one root,268

and blue indegree-0 nodes that are connected with blue edges forming a path graph. The269

blue node with no incoming blue edges is a root.270

Output: The empty graph if G minus the blue edges was a binary DAG, and a nonempty271

one or failure otherwise.272

Proof. This result follows directly from Lemmata 31 and 32. J273

The procedure starts by trying to apply unroot to get rid of any red roots left over by274

SearchIndeg0Nodes. Then it enters the loop Reduce!. The blue root in each iteration shall275

be called the “top root”. First, the program checks whether the top root has more than two276

children, i.e. whether its outdegree is greater than three, since the blue stack edge needs to277

be taken into account. If there are too many, the fail statement is invoked.278

nontrivial_stack checks whether the stack has more than one element. If it does not,279

add_bottom artificially adds a node to the bottom of the stack, in order for the following280

rules to still match.281

Next is a non-deterministic choice of rules that cover every case of the number of children282

the top root has, and how many of those are indegree-0 nodes. In each case, they pop the283

top root, and push the children that would have indegree 0 after the deletion. pop! serves284

to pop childless indegree-0 nodes for as long as there are any.285

CALCO 2019

23:10 Linear-Time Graph Algorithms in GP 2

ReduceIndeg0Nodes = try unroot; Reduce!; pop!; try final_pop
Reduce = if too_many_children then fail; if nontrivial_stack then skip
else add_bottom; {two_of_two, one_of_two, none_of_two, one_of_double,
none_of_double, one_of_one, none_of_one }; pop!

unroot (x:list) nontrivial_stack (x,y:list) add_bottom (x:list)

x ⇒ x
1 1

x y ⇒ x y
1 2 1 2

x ⇒ x
1 1

pop (x,y:list) two_of_two (a,b,x,y,z,t:list)

x y ⇒ y
1 1

x t

y z

⇒
t

y z

0

1 2

0

1 2

a b

where indeg(1)=1 and indeg(2)=1

final_pop (x:list)

x ⇒ ∅

one_of_two (a,b,x,y,z,t:list) none_of_two (a,b,x,y,z,t:list)

x t

y z

⇒
t

y z

0

1 2

0

1 2

a b

where indeg(1)>1 and indeg(2)=1

x t

y z

⇒
t

y z

0

1 2

0

1 2

a b

where indeg(1)>1 and indeg(2)>1

one_of_double (a,b,x,y,t:list) none_of_double (a,b,x,y,t:list)

x t

y
⇒

t

y

0

1

0

1

ba

where indeg(1)=2

x t

y
⇒

t

y

0

1

0

1

ba

where indeg(1)>2

one_of_one (a,x,y,t:list) none_of_one (a,x,y,t:list)

x t

y
⇒

t

y

0

1

0

1

a

where indeg(1)=1

x t

y
⇒

t

y

0

1

0

1

a

where indeg(1)>1

too_many_children (x:list)

x ⇒ x
1 1

where outdeg(1)>3

Figure 10 The ReduceIndeg0Nodes procedure

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒∅

Figure 11 Example execution of ReduceIndeg0Nodes

G.Campbell, B. Courtehoute and D. Plump 23:11

5.2 Performance286

We will show that our binary DAG recognition program always terminates in linear time,287

given an input graph of bounded degree. We have also included empirical evidence for this.288

I Theorem 12 (Complexity of is-bin-dag). Given a connected input graph of bounded289

degree, the program is-bin-dag terminates in linear time.290

Proof. The Main procedure of is-bin-dag contains no loops. SearchIndeg0Nodes and291

ReduceIndeg0Nodes terminate in linear time by Lemmata 25 and 33. nonempty_stack292

matches in constant time by Theorem 1 since it is a fast rule schema. anything also matches293

in constant time since any node is a valid match. J294

In order to support the linear time complexity of is-bin-dag, performance will be295

measured on two graph classes, one consisting of binary DAGs, and the other of non-DAGs.296

(a) Grid Chain GC(3) (b) Sun Graph SG(6)

Figure 12 Input Graph Classes

Consider the following class of binary DAGs. For n ≥ 1, the grid chain GC(n) consists of297

n grids of size n× n, joint by the nodes of indegree and outdegree 1 in order to form a chain.298

This class was chosen for having an unbounded number of indegree-0 nodes, meaning that299

the implemented stack is relatively large.300

Now consider the following class of non-DAGs. For n ≥ 3, the sun graph SG(n) consists301

of a directed cycle of n nodes, each of which has an an additional neighbour connected by an302

incoming edge. The reason for using this class is, in addition to half the nodes having indegree303

0, the other half are part of the cycle, and therefore never get deleted by ReduceIndeg0Nodes.304

This causes an unbounded amount of nodes to be left over.305

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·105

0
5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of nodes in input

Ex
ec
ut
io
n
tim

e
(s
)

Grid Chain
Sun Graph

Figure 13 Measured performance of is-bin-dag

CALCO 2019

23:12 Linear-Time Graph Algorithms in GP 2

6 Topological Sorting306

Given a DAG G, a topological sorting is a total order (an antisymmetric, transitive, and307

connex binary relation) ≤ on VG, the set of nodes of G, such that for each edge of source308

u and target v, u ≤ v (topological property). Topological sortings cannot exist for graphs309

containing directed cycles, since there is no way to define a total order on the nodes of a cycle310

such that the topological property is satisfied. Furthermore, every DAG has a topological311

sorting.312

There are two commonly used linear-time algorithms for finding a topological sorting313

[19, 18]. One seeks out indegree-0 nodes, adds them to the total order, deletes them, and314

repeats this process until all nodes have been added to the order. The other, which is used315

as the basis for the algorithm in this paper, conducts a DFS. Upon completion of a node316

in the DFS, that node is added as the new minimum element of the linear order. However,317

unlike the program general-dfs from Section 4, the direction of the edges needs to be318

respected in order to get a topological sorting in the end. Simply turning the bidirectional319

edges of general-dfs into directed edges is not enough since that would only visit the nodes320

reachable from the initially rooted node, which is not necessarily the entire input graph.321

Traditional algorithms solve this problem by skipping to the next unvisited node in the data322

structure representing the graph, and continuing the DFS from there. Similarly, the program323

top-sort uses a DFS implementation with directed edges (SortNodes), and once it runs out324

of unvisited nodes, it uses a DFS similar to general-dfs (SearchUnsortedNodes) to find a325

node that has not been visited yet, and to continue the SortNodes DFS.326

6.1 The Program327

We give the GP2 implementation of topological sorting in Figure 14 and show its correctness.328

We have added the restriction that the input graph must be connected since in the current329

version of GP2, there is no known way to implement a DFS that is linear-time for graphs330

with an unbounded number of connected components. We have also included an example331

execution of the program in Figure 15.332

I Theorem 13 (Correctness of top-sort). The program top-sort fulfills the following333

specification.334

Input: A connected DAG G with no roots whose nodes are all marked grey, and whose335

edges are unmarked.336

Output: G with additional blue edges that define a topological ordering on VG. The nodes337

of G are marked blue and each have a red loop. One of these nodes is rooted. Furthermore,338

there is an additional unlabelled green root node with an outgoing green edge pointing to a339

node with no incoming blue edges.340

Proof. This theorem follows from Lemma 37. J341

The additional constructs in the output graph, apart from the blue edges, are needed for342

the execution of the program. One could define a linear-time cleanup procedure to remove343

these constructs. The green root and its outgoing edge can be deleted in constant time, since344

access to roots is constant. Similarly, the blue rooted node can be unrooted in constant time.345

A DFS similar to the one in Section 4 can be used to remove the red loops or unmark all the346

nodes in linear time.347

The subgraph induced by the blue edges is a path graph containing all the nodes from348

the input graph. So the binary relation ≤ on the set of nodes defined by u ≤ v if there is a349

G.Campbell, B. Courtehoute and D. Plump 23:13

path of blue edges from u to v is a total order, which is a necessary property for a topological350

sorting. Similarly to the SearchIndeg0Nodes procedure of Subsection 5.1, the blue nodes351

and edges implement a stack. However, this time the top of the stack is denoted with a352

green root pointing towards it with a green edge in order not to interfere with a DFS in353

SortNodes.354

Main = init; SearchUnsortedNodes
SearchUnsortedNodes = ((try unsorted then SortNodes; search_forward)!;
try search_back else break)!
SortNodes = (sort_forward!; try sort_back_push else (try sort_back_stack
else (try red_push else red_stack; break)))!

init (x:list) unsorted (x:list)

x ⇒ x
1 1

x ⇒ x
1 1

search_forward (a,x,y:list) search_back (a,x,y:list)

x y ⇒ x y
1 2 1 2

where not edge(2,2)

a a
x y ⇒ x y
1 2 1 2

a a

sort_forward (a,x,y:list) red_stack (x:list)

x y ⇒ x y
1 2 1 2

a a x ⇒ x
0 1 0 1

red_push (x,y:list) sort_back_stack (a,x,y:list)

x

y
⇒

x

y

1 1

0 2 0 2

x y

⇒
x y

1 2 1 2

0 0

a a

sort_back_push (a,x,y,z:list)

x y

z

⇒
x y

z

1 2 1 2

0 3 0 3

a a

Figure 14 The GP2 program top-sort

The program starts by rooting an input node and endowing it with a red loop, as well as355

creating an unmarked, unlabelled root that is disconnected from the rest of the graph. This356

root will point to the top of the stack, and shall hence be called the “pointer”.357

SearchUnsortedNodes is a DFS implementation similar to general-dfs from Section 4358

that seeks out a node that has not been visited by SortNodes yet. Instead of using a red359

mark to designate a node as visited, it uses a red loop. Since the input is assumed to be a360

DAG, it has no loops. This leaves the use of marks to the DFS in SortNodes. So in order for361

the forward step to only match unvisited neighbours of the root, a predicate to forbid loops is362

needed. The “any” mark ensures that colour does not matter. Right before each application363

of the forward step, unsorted tests whether the current root has been visited by SortNodes364

yet, i.e. whether it is grey. At the same time, said root is initialised for SortNodes by being365

CALCO 2019

23:14 Linear-Time Graph Algorithms in GP 2

marked red.366

Next, SortNodes is applied. It performs a DFS with directed edges. Similarly to367

SearchIndeg0Nodes from Section 5, it pushes the current root onto the stack during its368

back step. sort_back_push is applied when the stack has at least one element, otherwise369

sort_back_stack creates the stack. The pointer being green represents the stack being370

nonempty. The break statement is preceded by try red_push else red_stack, since when371

the back step can no longer be applied, the current root is still pushed onto the stack. Again,372

two rules are needed to cover the cases of the stack being empty or not. Because of the373

repeated application of the back step, the root ends up where it was at the beginning of374

SortNodes, meaning that the DFS of SearchUnsortedNodes can resume undisturbed.375

⇒ ⇒∗ ⇒ ⇒ ⇒∗

⇓

∗⇐∗⇐∗⇐∗⇐⇐

Figure 15 Example execution of top-sort

6.2 Performance376

Finally, we show that, given a valid input graph of bounded degree, our topological sorting377

program will always terminate in linear time.378

I Theorem 14 (Complexity of top-sort). Given a connected DAG of bounded degree with379

only grey unrooted nodes whose edges are unmarked as an input, the program top-sort380

terminates in linear time.381

Proof. This theorem follows from Lemma 38. J382

In order to support the linear time complexity of top-sort, we make use of the grid383

chains from Subsection 5.2. They are DAGs, the type of graph top-sort is meant to be used384

on. Furthermore, they have an unbounded number of indegree-0 nodes. Since indegree-0385

nodes are unreachable from any other node, and SortNodes can only visit nodes reachable386

from the red root it is called on, SortNodes will have to be applied at least once for each387

indegree-0 node, i.e. an unbounded number of times. Thus these input graphs can adequately388

illustrate the linearity of top-sort. Figure 16 is a plot of the program timings, demonstrating389

linear time complexity.390

G.Campbell, B. Courtehoute and D. Plump 23:15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·105

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of nodes in input

Ex
ec
ut
io
n
tim

e
(s
)

Figure 16 Measured performance of top-sort on grid chains

7 Conclusion391

The polynomial cost of graph matching is the performance bottleneck for languages based on392

standard graph transformation rules. GP 2 mitigates this problem by providing rooted rules393

which under mild conditions can be matched in constant time. We presented rooted GP2394

programs for three graph algorithms: tree recognition, connected binary DAG recognition,395

and topological sorting. The programs were proved to be correct and to run in linear time396

on graphs of bounded node degree. The proofs demonstrate that graph transformation397

rules provide a convenient and intuitive abstraction level for formal reasoning on graph398

programs. We also gave empirical evidence for the linear run time of the programs, by399

presenting benchmark results for graphs of up to 100,000 nodes in various graph classes. For400

DAG recognition and topological sorting, the linear behaviour was achieved by implementing401

depth-first search strategies based on an encoding of stacks in graphs.402

In future work, we intend to investigate for more graph algorithms whether and under403

what conditions their time complexity in conventional programming languages can be reached404

in GP2. The more involved the data structures of those algorithms are, the more challenging405

will be the implementation task. This is because in GP2, the internal graph data structure406

is (intentionally) hidden from the programmer and hence any data structures used by an407

algorithm need to be encoded in host graphs. A simple example for this is the encoding of408

stacks as linked lists in the programs for DAG recognition and topological sorting.409

The three programs in this paper and also the 2-colouring program of [6] need host graphs410

of bounded node degree in order to run in linear time. A topic for future work is therefore to411

find a mechanism that allows to overcome this restriction. Clearly, such a mechanism will412

require to modify GP2 and its implementation.413

References414

1 Aditya Agrawal, Gabor Karsai, Sandeep Neema, Feng Shi, and Attila Vizhanyo. The design415

of a language for model transformations. Software and System Modeling, 5(3):261–288, 2006.416

doi:10.1007/s10270-006-0027-7.417

2 Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer418

Algorithms. Addison-Wesley, 1974.419

3 Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and Gabriele Taentzer.420

Henshin: Advanced concepts and tools for in-place EMF model transformations. In Model421

CALCO 2019

http://dx.doi.org/10.1007/s10270-006-0027-7

23:16 Linear-Time Graph Algorithms in GP 2

Driven Engineering Languages and Systems (MODELS 2010), volume 6394 of Lecture Notes422

in Computer Science, pages 121–135. Springer, 2010. doi:10.1007/978-3-642-16145-2_9.423

4 Christopher Bak. GP2: Efficient Implementation of a Graph Programming Language. PhD424

thesis, Department of Computer Science, University of York, 2015. URL: http://etheses.425

whiterose.ac.uk/12586/.426

5 Christopher Bak and Detlef Plump. Rooted graph programs. In Proc. International Workshop427

on Graph Based Tools (GraBaTs 2012), volume 54 of Electronic Communications of the EASST,428

2012. doi:10.14279/tuj.eceasst.54.780.429

6 Christopher Bak and Detlef Plump. Compiling graph programs to C. In Proc. International430

Conference on Graph Transformation (ICGT 2016), volume 9761 of LNCS, pages 102–117.431

Springer, 2016. doi:10.1007/978-3-319-40530-8_7.432

7 Thomas H. Cormen, Charles E. Leiserson, Robert L. Rivest, and Clifford Stein. Introduction433

to Algorithms. The MIT Press, third edition, 2009.434

8 Hartmut Ehrig, Claudia Ermel, Ulrike Golas, and Frank Hermann. Graph and Model435

Transformation. Monographs in Theoretical Computer Science. Springer, 2015. doi:436

10.1007/978-3-662-47980-3.437

9 Maribel Fernández, Hélène Kirchner, Ian Mackie, and Bruno Pinaud. Visual modelling of438

complex systems: Towards an abstract machine for PORGY. In Proc. Computability in Europe439

(CiE 2014), volume 8493 of Lecture Notes in Computer Science, pages 183–193. Springer, 2014.440

doi:10.1007/978-3-319-08019-2_19.441

10 Amir Hossein Ghamarian, Maarten de Mol, Arend Rensink, Eduardo Zambon, and Maria442

Zimakova. Modelling and analysis using GROOVE. International Journal on Software Tools443

for Technology Transfer, 14(1):15–40, 2012. doi:10.1007/s10009-011-0186-x.444

11 Ivaylo Hristakiev and Detlef Plump. Checking graph programs for confluence. In Software445

Technologies: Applications and Foundations – STAF 2017 Collocated Workshops, Revised446

Selected Papers, volume 10748 of Lecture Notes in Computer Science, pages 92–108. Springer,447

2018. doi:10.1007/978-3-319-74730-9_8.448

12 Edgar Jakumeit, Sebastian Buchwald, and Moritz Kroll. GrGen.NET - the expressive,449

convenient and fast graph rewrite system. International Journal on Software Tools for450

Technology Transfer, 12(3–4):263–271, 2010. doi:10.1007/s10009-010-0148-8.451

13 Detlef Plump. The design of GP 2. In Proc. Workshop on Reduction Strategies in Rewriting452

and Programming (WRS 2011), volume 82 of Electronic Proceedings in Theoretical Computer453

Science, pages 1–16, 2012. doi:10.4204/EPTCS.82.1.454

14 Detlef Plump. From imperative to rule-based graph programs. Journal of Logical and Algebraic455

Methods in Programming, 88:154–173, 2017. doi:10.1016/j.jlamp.2016.12.001.456

15 Christopher M. Poskitt and Detlef Plump. Hoare-style verification of graph programs. Funda-457

menta Informaticae, 118(1-2):135–175, 2012. doi:10.3233/FI-2012-708.458

16 Christopher M. Poskitt and Detlef Plump. Verifying monadic second-order properties of459

graph programs. In Proc. International Conference on Graph Transformation (ICGT 2014),460

volume 8571 of Lecture Notes in Computer Science, pages 33–48. Springer, 2014. doi:461

10.1007/978-3-319-09108-2_3.462

17 Olga Runge, Claudia Ermel, and Gabriele Taentzer. AGG 2.0 — new features for specifying463

and analyzing algebraic graph transformations. In Proc. Applications of Graph Transformations464

with Industrial Relevance (AGTIVE 2011), volume 7233 of Lecture Notes in Computer Science,465

pages 81–88. Springer, 2012. doi:10.1007/978-3-642-34176-2_8.466

18 Robert Sedgewick. Algorithms in C. Part 5: Graph Algorithms. Addison-Wesley, third edition,467

2002.468

19 Steven Skiena. The Algorithm Design Manual. Springer, second edition, 2008. doi:10.1007/469

978-1-84800-070-4.470

http://dx.doi.org/10.1007/978-3-642-16145-2_9
http://etheses.whiterose.ac.uk/12586/
http://etheses.whiterose.ac.uk/12586/
http://etheses.whiterose.ac.uk/12586/
http://dx.doi.org/10.14279/tuj.eceasst.54.780
http://dx.doi.org/10.1007/978-3-319-40530-8_7
http://dx.doi.org/10.1007/978-3-662-47980-3
http://dx.doi.org/10.1007/978-3-662-47980-3
http://dx.doi.org/10.1007/978-3-662-47980-3
http://dx.doi.org/10.1007/978-3-319-08019-2_19
http://dx.doi.org/10.1007/s10009-011-0186-x
http://dx.doi.org/10.1007/978-3-319-74730-9_8
http://dx.doi.org/10.1007/s10009-010-0148-8
http://dx.doi.org/10.4204/EPTCS.82.1
http://dx.doi.org/10.1016/j.jlamp.2016.12.001
http://dx.doi.org/10.3233/FI-2012-708
http://dx.doi.org/10.1007/978-3-319-09108-2_3
http://dx.doi.org/10.1007/978-3-319-09108-2_3
http://dx.doi.org/10.1007/978-3-319-09108-2_3
http://dx.doi.org/10.1007/978-3-642-34176-2_8
http://dx.doi.org/10.1007/978-1-84800-070-4
http://dx.doi.org/10.1007/978-1-84800-070-4
http://dx.doi.org/10.1007/978-1-84800-070-4

G.Campbell, B. Courtehoute and D. Plump 23:17

A Appendix: Proofs471

This appendix consists of lemmata and proofs omitted from the main sections.472

A.1 Tree Recognition Lemmata473

By rooted input graph, we mean an arbitrary labelled GP2 input graph with every node474

coloured grey, exactly one root node, and no additional marks. That is, a valid input graph475

after init has been applied. By rooted input tree, we mean an rooted input graph that is476

a non-empty tree. In this appendix, we give the proofs of the lemmata needed to support477

Theorems 6 and 7 from Section 3.478

I Lemma 15. Reduce! terminates after at most 2|VG| steps.479

Proof. Let #G be the number of nodes, and �G be the number of grey nodes. If G⇒prune H,480

then #G > #H and �G > �H. If G ⇒push H then #G = #H and �G > �H. Suppose481

there were an infinite sequence of derivations G0 ⇒ G1 ⇒ G2 ⇒ · · ·, then there would be an482

infinite descending chain of natural numbers #G0 +�G0 > #G1 +�G1 > #G2 +�G2 > · · ·,483

which contradicts the well-ordering of N. To see the last part, notice that �G ≤ #G for all484

graphs G, so the result is immediate since there are only 2#G natural numbers less than485

2#G. J486

I Lemma 16. If G is a tree and G ⇒∗Reduce H, then H is a tree. If G is not a tree and487

G⇒Reduce! H, then H is not a tree.488

Proof. Clearly, the application of push preserves structure. Suppose G is a tree. prune is489

applicable if and only the second node is matched against a leaf node, due to the dangling490

condition. Upon application, the leaf node and its incoming edge is removed. Clearly the491

result graph is still a tree. If G is not a tree and prune is applicable, then we can see the492

properties of not being a tree are preserved. That is, if G is not connected, H is certainly493

not connected. If G had parallel edges, due to the dangling condition, they must exist in494

G \ g(L), so H has parallel edges. Similarly, cycles are preserved. Finally, if G had a node495

with incoming degree greater than one, then H must too, since the node in G that is deleted496

in H had incoming degree one, and the degree of all other nodes is preserved. So, we have497

shown Reduce is structure preserving, and then by induction, so is Reduce!. J498

I Lemma 17. If G is a rooted input graph and G⇒∗Reduce H, then H has exactly one root499

node. Moreover, there is no derivation sequence that derives the empty graph.500

Proof. In each application of prune or push, the number of root nodes is invariant since501

the LHS of each rule must be matched against a root node in the host graph, so the other502

non-roots can only be matched against non-roots, and so the result holds by induction. To503

see that the empty graph cannot be derived, notice that each derivation reduces #G by at504

most one, and no rules are applicable when #G = 1. J505

I Lemma 18. If G is a rooted input graph and G⇒∗Reduce H. Then, every blue node in H506

either has a blue child or a root-node child.507

Proof. Clearly G satisfies this, as there are no blue nodes. We now proceed by induction.508

Suppose G⇒∗Reduce H ⇒Reduce H ′ where H satisfies the condition. If prune is applicable,509

we introduce no new blue nodes. Additionally, any blue parents of the node 1 are preserved.510

So H ′ satisfies the condition. Finally, if push is applied, then the new blue node has a511

CALCO 2019

23:18 Linear-Time Graph Algorithms in GP 2

root-node child, and the blue nodes in H ′ \ h(R) have the same children, so H ′ satisfies the512

condition. J513

I Corollary 19. Let G be a rooted input tree and G⇒∗Reduce H. Then the root-node in H514

has no blue children.515

Proof. By Lemma 17, H has exactly one root node, and by Lemma 18, all chains of blue516

nodes terminate with a root-node. If said root-node were to have a blue child, then we would517

have a cycle, which contradicts that H is a tree (Lemma 16). J518

I Lemma 20. Let G be a rooted input tree and G⇒∗Reduce H. Then, either |VH | = 1 or H519

is not in normal form.520

Proof. By Lemma 17, |VH | ≥ 1. If |VG| = 1, then G is in normal form. Otherwise, either521

the root node has no children, or it has at least one grey child. In the first case, prune must522

be applicable, and in the second, push. Suppose G ⇒∗Reduce H. If |VH | = 1, then H is in523

normal form by the proof to Lemma 17. Otherwise, by Lemma 16 H is a tree and |VH | > 1.524

Now, the root-node in H (Lemma 17) must have a non-empty neighbourhood. If it has525

no children, then prune must be applicable. Otherwise, push must be applicable, since by526

Corollary 19, there must be a grey node child. So H is not in normal form. J527

A.2 DFS Lemmata528

In this appendix, we give the proofs of the lemmata needed to support Theorem 8 from529

Section 4.530

I Lemma 21 (Termination of general-dfs). Given an input graph G with grey nodes an531

unmarked edges, general-dfs terminates.532

Proof. Consider the following (total) lexicographical ordering > on graphs, defined as533

H1 > H2 if H1 has more grey nodes than H2, or H1 and H2 have the same number of grey534

nodes and H1 has more dashed edges than H2. If forward is applied on a graph H1, yielding535

H2, then H1 > H2 since the rule strictly decreases the number of grey nodes. In particular,536

forward! terminates since eventually, there is no possible match for the left hand side of537

forward. Similarly, applying back on a graph H1 to obtain H2 strictly decreases the number538

of dashed edges, and keeps the number of grey nodes constant. So H1 > H2. Since G has539

only grey nodes and unmarked edges, there are at most |VG| · |EG| (i.e. finitely many) graphs540

H such that G > H. So at some point, neither forward, nor back are applicable. Since back541

is not applicable, the break statement is invoked, causing the program to exit the loop. J542

I Lemma 22 (Correctness of general-dfs). Given a connected input graph G with grey543

unrooted nodes an unmarked edges, the subgraph H induced by the edges that have been dashed544

during the execution of general-dfs is a spanning tree, all of whose nodes are marked red.545

Proof. H is a tree if and only if it is connected and has |VH | − 1 edges. This property shall546

be used to show that H is a tree. The program starts by applying init, which roots an547

input node v and marks it red. If G only has one node, the program terminates and H is548

the empty graph, which is a tree. Otherwise, forward gets applied to a node w (since G is549

connected) and dashes the edge between v and w, making them part of H. So H has at550

least two nodes and one edge. The only rule dashing edges is forward, which, apart from551

init, is the only rule marking grey nodes red. So the nodes of H are exactly the nodes552

that are marked red during execution. forward matches a red node, a grey node, and the553

G.Campbell, B. Courtehoute and D. Plump 23:19

edge between them, ensuring they are all part of H. Since only the red node was part of H554

already, exactly one node and one edge are added to H. Hence, if forward is applied n ≥ 0555

times, we have |VH | = 2 + n and |EH | = 1 + n = |VH | − 1. Since forward adds an edge and556

a node to what is known to be part of H already, starting from a connected graph, H is557

connected.558

It remains to show that H is a spanning tree. If |VG| ≤ 2, applying init followed by559

forward ensures H being a spanning tree. Otherwise, since H is a subgraph of G as well as560

a tree, it can be extended to a spanning tree T . Assume for the sake of a contradiction that561

G \H in nonempty. Let w be a (grey) node of G \H adjacent to a (red) node u of H. It562

exists since G is connected. Each leaf v of H marks the termination of forward! (which563

terminates by Lemma 21), because if forward could have been applied again, it would have,564

and v would have two adjacent dashed edges. If u is a leaf, forward would be applicable to u565

and w, marking w red and causing a contradiction. If u is not a leaf, after all its descendants566

have been marked red, the root would be moved back to u using applications of the back567

rule. Subsequently, u and w would have been matched by forward, causing a contradiction568

again. J569

I Corollary 23. Given a connected input graph G with grey unrooted nodes an unmarked570

edges, where |VG| ≥ 2, general-dfs applies forward and back exactly |VG| − 1 times each.571

For |VG| < 2, they are not applied at all.572

Proof. If |VG| < 2, forward and back do not have enough vertices to match.573

Otherwise, since H as in Lemma 22 is a spanning tree, it has |VG| − 1 edges. As seen574

in the proof of that Lemma, H is constructed a red root by applying forward a number of575

times, which adds an edge and a node each time. So forward must have been applied at576

least |VG| − 1 times. It must also have been applied at most |VG| − 1 times, since that’s the577

number of grey nodes after application of init, since it marks every added grey node red,578

and since no other rule introduces grey nodes.579

back matches at most |VG| − 1 times since it can only match a dashed edge. It matches580

at least |VG| − 1 times since its left hand side is matchable throughout the spanning tree. J581

I Corollary 24 (Complexity of general-dfs). Given a connected input graph G of bounded582

degree with grey unrooted nodes an unmarked edges, general-dfs terminates in linear time.583

Proof. init is matched exactly once at the beginning of the program. Since the input has584

grey nodes only and hence valid matches, the rule matches in constant time. The other585

rules are fast rules, and hence match in constant time on graphs of bounded degree with a586

bounded number of roots by Theorem 1. There is always exactly one root since the input has587

none, init introduces one, and the other rules conserve the number of roots. By Corollary588

23, forward and back are applied a number of times linear in the size of the input graph.589

Since Lemma 21 guarantees the program to terminate, general-dfs terminates in linear590

time. J591

A.3 Binary DAG Recognition Lemmata592

In this appendix, we give the proofs of the lemmata needed to support Propositions 10 and593

11 and Theorem 12 from Section 5.594

I Lemma 25 (Complexity and Partial Correctness of SearchIndeg0Nodes). Given a connected595

input graph G with grey unrooted nodes an unmarked edges, SearchIndeg0Nodes terminates,596

and the subgraph H induced by the edges that have been dashed during the execution is a597

spanning tree. Furthermore, if G has bounded degree, the procedure terminates in linear time.598

CALCO 2019

23:20 Linear-Time Graph Algorithms in GP 2

Proof. Similar to the proofs in Appendix A.2. J599

I Lemma 26. Given a nonempty connected input graph G with grey unrooted nodes an600

unmarked edges, at any point of the execution of SearchIndeg0Nodes, there is at most one601

red root.602

Proof. init introduces a red root, and is only applied once and in the beginning. The other603

rules that do not preserve red roots are i0_push, i0_stack and i0_back_blue. If either604

i0_push or i0_stack are applied, the red root vanishes. Subsequently, i0_back_red cannot605

be applied. If i0_back_blue then gets applied the red root is reintroduced, conserving the606

existence of a red root within the iteration of the loop. If i0_back_blue does not get applied,607

the break statement is invoked and the procedure terminates. J608

I Lemma 27. Given a nonempty connected input graph G with grey unrooted nodes an609

unmarked edges, SearchIndeg0Nodes outputs G where all the indegree-0 nodes (and only610

those) are marked blue and connected with blue edges forming a path graph. The blue node611

with no incoming blue edge is rooted.612

Proof. If G has no indegree-0 nodes, then the lemma is trivially satisfied. So assume G has613

at least one.614

By Lemma 25, SearchIndeg0Nodes visits all nodes. Since the right hand side of each615

rule only contains red and blue nodes, every node is marked either red or blue. The only rules616

that introduce a blue mark are i0_push and i0_back_blue, and they turn a red root into a617

blue root. These rules only get applied if the indegree of said red node is 0. Furthermore,618

the only edges introduced by SearchIndeg0Nodes are blue edges between two blue nodes619

(in i0_push), hence the indegree of a red node is the same as its indegree in the input graph.620

So only indegree-0 nodes are marked blue. Furthermore, since SearchIndeg0Nodes visits,621

i.e. roots every node of the input graph at some point, all indegree-0 nodes are marked blue,622

and all non-indegree-0 nodes red.623

All rules apart from i0_push and i0_stack preserve the structure of the subgraph624

consisting of blue nodes and edges. i0_stack only is applied only if i0_push is not applicable.625

But the left hand side of i0_push contains a blue root, which can only be created by itself or626

i0_stack. So i0_push cannot be applied until i0_stack is applied. Since G cannot consist627

of only indegree-0 nodes (which would mean G is disconnected), i0_push can always be628

matched if the red root has indegree 0. If the red root does not have indegree 0, i0_stack629

cannot be matched either. So the only way for these two rules to match is for i0_stack to630

be matched first and only once, followed by i0_push being matched any number of times.631

Thus, a blue root is created, and then, repeatedly, a new blue node gets connected to the632

blue root with an outgoing blue edge, while the root moves to the newly added blue node.633

This construction results in the blue nodes and edges forming a path graph where the node634

with no incoming edges is a root. J635

I Lemma 28 (Termination of ReduceIndeg0Nodes). Let G be a connected graph with red636

non-indegree-0 nodes containing at most one root, and blue indegree-0 nodes that are connected637

with blue edges forming a path graph. The blue node with no incoming blue edges is a root.638

Given a G as an input, ReduceIndeg0Nodes terminates.639

Proof. pop can only be applied a finite number of times since it reduces the number of nodes640

in the host graph. So pop! terminates.641

Claim: During the execution of ReduceIndeg0Nodes, add_bottom gets applied at most642

twice.643

G.Campbell, B. Courtehoute and D. Plump 23:21

Proof of Claim: Assume add_bottom has already been applied twice, creating the644

additional nodes u and v. It only gets applied when nontrivial_stack cannot be matched,645

i.e. when the stack consists of only one element. So it adds a blue node to the bottom of the646

stack. Since every other rule that modifies the stack only does so at the top, u and v must647

be consecutive and at the bottom. So right after the second application of add_bottom, the648

stack consists of only u and v. Neither u nor v can ever have red neighbours, since there is649

no rule with an edge incident to a red node in its right hand side. Hence none of the rules in650

the rule set call between curly braces is applicable, causing Reduce to fail, and add_bottom651

never to be applied again.652

The rules in the rule set call and pop reduce the number of nodes in the host graph by653

exactly one. So by the claim, they can be applied at most |VG|+ 2 times each. So at some654

point in the loop, they will no longer be applicable. Neither will add_bottom since it can655

only be applied twice. So Reduce! terminates. J656

I Lemma 29. Given an input graph G as described in Lemma 28, every node that has no657

incoming unmarked edges (called quasi-indegree-0 node) in some host graph of the execution658

of ReduceIndeg0Nodes gets marked blue.659

Proof. Indeed, the input graph has all quasi-indegree-0 nodes marked blue already. The660

only rules deleting edges are those from the rule set call (pop and final_pop cannot delete661

unmarked edges incident to the node they delete because the dangling condition needs to be662

satisfied for them to match). So these are the only rules that can create new quasi-indegree-0663

nodes. If one of said nodes has indegree 0, it gets detected by the condition of a rule and664

marked blue. These rules cover each case of how many children their quasi-indegree-0 parent665

can have in a binary DAG, namely one, one with two parallel edges, and two. The case of666

no children is covered by pop afterwards. They also cover all cases of how many of these667

children are quasi-indegree-0. So at each execution step, the newly created quasi-indegree-0668

nodes get marked blue, proving this lemma. J669

I Lemma 30. Given an input graph G as described in Lemma 28, every node that is marked670

blue during execution of ReduceIndeg0Nodes is not present in the output.671

Proof. Nodes can only be marked blue if an already existing blue node is matched. So it is672

enough to show that, at some point of the execution, there will be no blue nodes. There673

are three potential ways to exit the loop Reduce!. The first is through the fail statement674

after matching too_many_children. This will never happen since the input minus the blue675

edges is binary, and every rule conserves the blue root having exactly one outgoing blue edge.676

The second way is for add_bottom to fail. This can only happen when there is no blue root.677

The only rule deleting a blue root is final_pop, which is only called after termination of678

Reduce!. Since furthermore, the input is assumed to have a blue root, and every other rule679

conserves the existence of a blue root, add_bottom is always applicable. The third and final680

way to exit the loop is when none of the rules in the rule set call are applicable. The blue681

root not having an element below it in the stack cannot be a reason for that, since in that682

case, add_bottom would have been applied. So the current blue root v does not have red683

neighbours. Since pop! has been applied in the previous iteration of Reduce!, v was the684

only blue node in the previous iteration, otherwise it would have been popped. Hence in the685

current iteration, add_bottom was applied, and so the only blue nodes are v and the node686

created by add_bottom, say w. By Lemma 28, Reduce! terminates, so this always happens687

for the given input. As established, v has no children. Neither does w since it was created688

by add_bottom and there is no rule with edges incident to red nodes in its right hand side.689

CALCO 2019

23:22 Linear-Time Graph Algorithms in GP 2

Thus pop deletes v, then final_pop deletes w, causing all previously blue marked nodes to690

be deleted. J691

I Lemma 31 (Correctness of ReduceIndeg0Nodes for Binary DAGs). Given an input graph G692

as described in Lemma 28, if G minus the blue edges is a binary DAG, ReduceIndeg0Nodes693

yields the empty graph.694

Proof. Assume, for the sake of a contradiction, that the output of ReduceIndeg0Nodes695

contains a node v. By Lemmata 29 and 30, v cannot have been a quasi-indegree-0 node (i.e.696

an indegree-0 node when ignoring blue edges) at any point during execution. Furthermore, v697

must have a parent that never was a quasi-indegree-0 node, because otherwise it would have698

been marked blue by one of the rule set call rules. The same argument can then be applied699

to the parent’s parent, and so on indefinitely. Since the input is finite however, two of these700

parents must be equal, meaning that there is a cycle. This contradicts the input minus the701

blue edges being a DAG. J702

I Lemma 32 (Correctness of ReduceIndeg0Nodes for Non-Binary Graphs or Non-DAGs).703

Given an input graph G as described in Lemma 28, if G minus the blue edges is either not704

binary, or not a DAG, then ReduceIndeg0Nodes yields a nonempty graph.705

Proof. Assume G is not a DAG. Then it has a directed cycle consisting of consecutive706

nodes v1, v2,. . . vn. None of these nodes have indegree 0 ignoring blue edges, so they are707

never matched by the rule set call rules that would mark them blue. Since there are no708

rules that delete red nodes (only rules that mark them blue), v1, v2,. . . vn never get deleted.709

Thus the output is nonempty. Failure cannot occur since every rule and procedure of710

ReduceIndeg0Nodes is either preceded by try or followed by !.711

Now assume that G is a DAG but is not binary. Consider an arbitrary node v of G. The712

aim is to show that, if v has more than two children (excluding blue edges), then the output713

is nonempty. By Lemma 29, v gets marked blue at some point of the execution. This can714

only happen in the rule set call rules. Assume v has just been marked blue by one of these715

rules. We can also assume that v is rooted since, by Lemma 30, every blue node gets deleted716

at some point, which can only happen in one of the rule set call rules or in pop. The case of717

it happening in pop shall be discarded since that would mean v has no children (disregarding718

blue edges). Back in the execution right after execution of one of the rule set call rules, since719

pop! cannot fail, the loop Reduce! enters its next iteration. The procedure tries to apply720

too_many_children to the blue root. If v has more than two children (disregarding blue721

edges), it succeeds, and the fail statement is invoked, terminating the loop Reduce!. Since722

v has children, both pop and final_pop do not get applied, for the dangling condition is723

not satisfied. So the output contains v and is therefore nonempty. J724

I Lemma 33 (Complexity of ReduceIndeg0Nodes). Given an input graph G as described in725

Lemma 28 with bounded degree, ReduceIndeg0Nodes terminates in linear time.726

Proof. By Lemma 28, the procedure terminates. Every rule is a fast rule schema, and is727

hence applied in constant time by Theorem 1 (the input is assumed to have bounded degree,728

and form the input specification, the fact that unroot removes a red root if it is present, and729

the fact that all the other rules conserve the number of roots, there are at most two roots730

in the host graph at any given point of the execution). So it is enough to show that each731

of the constantly many rules gets applied a linear number of times. unroot and final_pop732

get applied at most once. By the proof of Lemma 28, add_bottom gets applied at most733

twice, and each rule set call rule as well as pop at most |VG|+ 2 times. too_many_children734

G.Campbell, B. Courtehoute and D. Plump 23:23

and nontrivial_stack can only get reapplied if the rule set call does not fail, which can735

only happen at most |VG|+ 2 times. Hence ReduceIndeg0Nodes terminates in linear time.736

terminates in linear time. J737

A.4 Topological Sorting Lemmata738

In this appendix, we give the proofs of the lemmata needed to support Theorems 13 and 14739

from Section 6.740

I Lemma 34 (Termination of top-sort). Given a connected DAG G with no roots, grey741

nodes, and unmarked edges as an input, top-sort terminates.742

Proof. sort_forward! terminates since in each iteration, the number of grey nodes de-743

creases.744

For the termination of SortNodes, consider the following lexicographical ordering >.745

H1 > H2 if one of the following three statements are satisfied. H1 has more grey nodes than746

H2, or they have the same number of grey nodes but H1 has more dashed edges, or they have747

the same number of grey nodes and dashed edges but H1 has more red nodes. Let H1 be the748

input of an arbitrary iteration of SortNodes, and H2 its output. If sort_forward is applied749

any number of times, H1 > H2 since the number of grey nodes are reduced. Otherwise, if750

either sort_back_push or sort_back_stack is applied, H1 > H2 since the number of grey751

nodes is conserved and the number of dashed edges decreases in both rules. Otherwise, either752

red_push or red_stack have to be applied, which conserve the number of grey nodes and753

dashed edges, but decreases the number of red nodes. So in any case, H1 > H2. For a given754

graph H1 consider how many graphs H2 satisfy H1 > H2. By definition of >, H1 gives a755

(finite) upper bound on the number of grey nodes, dashed edges, and red nodes. Hence there756

are only finitely many possible H2s. Since sort_forward! terminates, and each iteration of757

the loop reduces the host graph with respect to <, SortNodes terminates.758

Consider (try unsorted then SortNodes; search_forward)!. If search_forward759

cannot be applied, the loop terminates. It is the only rule in this loop that increases the760

number of looped edges in the graph. Due to its predicate, it can only add looped edge to a761

node if it does not already have one. Furthermore, no rule decreases the number of looped762

edges. So for an arbitrary input graph H for the loop, at most |VH | looped edges can be763

added before search_forward fails. Hence the loop terminates (knowing that SortNodes764

also terminates).765

Finally, consider the loop that SearchUnsortedNodes consists of. Furthermore, consider766

the lexicographic ordering > defined by H1 > H2 if H2 has more nodes with looped edges767

than H1, or they have the same number of nodes with looped edges but H2 has less dashed768

edges than H1. By an argument similar to that of Lemma 21, SearchUnsortedNodes769

terminates. J770

For the correctness of SortNodes, the following concepts needs to be defined. In a graph771

G, a directed path from a node v to a node w is a sequence of distinct nodes v1, v2,. . . , vn772

such that v1 = v and vn = w, and for each i where 1 ≤ i ≤ n− 1, there is an edge of source773

vi and of target vi+1.774

A directed path from v to w is called grey-noded if all the nodes it consists of, except775

possibly v, are marked grey.776

Given a node v in a DAG G, let its descendants DescG(v) be defined as the subgraph of
G induced by the

{w ∈ VG | there is a directed grey-noded path from v to w} ∪ {v}.

CALCO 2019

23:24 Linear-Time Graph Algorithms in GP 2

I Lemma 35 (Correctness of SortNodes). Assume the input graph of top-sort has no blue777

edges. Let G be a connected DAG with a single red root v, where the nodes of DescG(v) are778

unrooted. Furthermore, let G have an additional root that is either unmarked and disconnected,779

or green and connected to the rest of the graph with an outgoing green edge. Let H be the780

output of SortNodes applied on G. Consider the binary relation ≤ on nodes of DescH(v)781

defined by u ≤ w if there is a directed path from u to w, or if u = w, such that all of the782

involved edges are blue. Then ≤ defines a topological sorting on DescH(v) minus the blue783

edges.784

Proof. Since the input graph of top-sort has no blue edges, any that are present in the785

host graph were created by rules. Whenever these rules create blue edges, they mark the786

incident nodes blue. No rule removes a blue mark, so the subgraph of the host graph induced787

by the blue edges always exclusively consists of blue nodes. Furthermore, every rime a node788

gets marked blue, the green root points towards it. And when a new blue edge gets created,789

the target node must also have the green root pointing towards it, and the source node must790

be a red root. So the procedure only adds a blue edge from a non-blue to the node that has791

most recently been marked blue. From this construction, we can infer that the graph induced792

by the blue edges is a path graph. Furthermore, no blue looped edges are introduced. So793

there can be no path from a node u to a node w and vice versa. Hence if u ≤ w and w ≤ u,794

u and w must be equal by definition of ≤, i.e. ≤ is antisymmetric.795

From the definition of ≤, it is clear that transitivity holds due to path concatenation796

resulting in paths.797

With a proof similar to that of Lemma 22, one can show that SortNodes turns every798

node of DescG(v) into a red root. Furthermore, all the red roots become blue nodes incident799

to blue edges. So ≤ is connex.800

To show that the topological property holds, consider two nodes u and w of DescH(v),801

both of which being distinct from v (v itself will be handled later). So by definition, there802

is path of non-blue edges from v to u, and one from v to w. We can assume without loss803

of generality that u becomes a red root before w. If there is no edge between u and w, the804

topological property imposes no constraint on said pair of nodes. If there is an edge from805

u to w, sort_forward gets applied again, dashing said edge and turning w into a red root.806

Hence later in the execution, w gets pushed before u, ensuring that the topological property807

is satisfied. If there is an edge from w to u, there can be no non-blue path from u to w since808

the input is a DAG. Hence u will be pushed before w, satisfying the topological property809

again. As for v, any condition involving it must have it as the source node by definition of810

DescH(v). Since v is pushed last, the topological property is satisfied.811

J812

I Lemma 36. Given an input G as described in Lemma 35, the output of SortNodes has813

the same dashed edges, and the red root in the same place as G.814

Proof. Let v be the red root of G. During the execution of SortNodes, there is always a815

path of dashed edges from v to the current red root, since sort_forward is the only rule of816

SortNodes with dashed edges in its right hand side and generates a path graph of red nodes817

and dashed edges, and since sort_back_stack and sort_back_push only remove the latest818

node from that path graph. The only way for their encompassing loop to end is for both of819

these rules not to be applicable. By the previous argument, this means that there are no820

dashed edges in said path graph left, and v is the red root when SortNodes terminates. J821

G.Campbell, B. Courtehoute and D. Plump 23:25

I Lemma 37 (Correctness of SearchUnsortedNodes). Let G be a connected acyclic graph822

with grey nodes and unmarked edges, except for a disconnected unmarked root and a red looped823

edge on a unique grey root. Given G as an input, SearchUnsortedNodes yields a graph such824

that the ordering from Lemma 37 extended to the entire output graph is a topological sorting.825

Proof. SearchUnsortedNodes is similar to general-dfs from Section 4, but instead of read826

marks, red looped edges are used. Furthermore, try unsorted then SortNodes is added,827

none of whose rules modify red looped edges. Also, after application of SortNodes, the red828

root remains at the same place, and the same edges remain dashed. So a reasoning similar829

to that in the proof of Lemma 22 can be used to justify that SearchUnsortedNodes visits830

every node of its input graph.831

SearchUnsortedNodes applies SortNodes to each of these visited nodes that are marked832

grey, say v, and implements a stack on Desc(v) defining a topological sorting. Clearly, the833

subgraph induced by the union of all these descendant graphs is just the output graph. So834

the concatenation of their topological sortings is a topological sorting of the entire output835

graph. J836

I Lemma 38 (Complexity of top-sort). Given a connected acyclic graph of bounded de-837

gree with grey unrooted nodes and unmarked edges G as an input, SearchUnsortedNodes838

terminates in linear time.839

Proof. First, let us give an upper bound to the number of applications of each rule. init840

is applied exactly once. Since init is the only rule having an unmarked root in its right841

hand side, and the input has no unmarked roots, red_stack and sort_back_stack can842

be matched at most once (in total). unsorted and sort_forward reduce the number of843

grey nodes by one. Since all the other rules conserve the number of grey nodes, and the844

input graph has |VG| grey nodes, they can be applied at most |VG| times in total. Similarly,845

search_forward (and init) reduce the number of nodes with no red looped edge by one. So846

they can also only be applied at most |VG| times in total. red_push and sort_back_push (as847

well as red_stack and sort_back_stack) are the only rules not to conserve the number of848

blue nodes, and reduce the number of non-blue nodes by exactly one. Since the input graph849

has no blue nodes, they can be applied at most |VG| times in total. As for search_back, a850

reasoning as in Corollary 23 can be used to justify search_back is applied an at most linear851

amount of times, since SortNodes conserves the number of dashed edges by Lemma 36.852

init is the only rule to increase the number of roots, specifically by two. All the other853

rules conserve the number of roots. So since the input graph has no roots, there is a constant854

number of roots at any point during the execution of top-sort.855

The only rules that are not fast are init due to the lack of roots, and search_forward856

due to the edge predicate. So by Theorem 1, all the other rules can be matched in constant857

time since the input has bounded degree. init is matched in constant time since it matches858

any input node. As for search_forward, since the input has bounded degree and the859

rules cannot create an unbounded number of edges incident to a single node, the predicate860

edge(2,2) only has to check a constant number of incident edges.861

Since each rule is matched a linear number of times in constant time, and the program862

terminates by Lemma 34, top-sort terminates in linear time. J863

CALCO 2019

	Introduction
	The Graph Programming Language GP2
	Graphs, Rules and Programs
	Rooted Programs

	Recognising Trees
	Implementing Depth First Search
	Recognising Binary DAGs
	Correctness of Procedures
	Performance

	Topological Sorting
	The Program
	Performance

	Conclusion
	Appendix: Proofs
	Tree Recognition Lemmata
	DFS Lemmata
	Binary DAG Recognition Lemmata
	Topological Sorting Lemmata

