Introduction to Computable Analysis

Lecture 3: The Cantor Space II

Graham Campbell

Summer 2019

Graham Campbell Introduction to Computable Analysis

In mathematical logic, a Gödel numbering is a function that assigns each symbol and well-formed formula to a unique natural number, used by K. Gödel for the proof of his incompleteness theorems in 1931.

In mathematical logic, a Gödel numbering is a function that assigns each symbol and well-formed formula to a unique natural number, used by K. Gödel for the proof of his incompleteness theorems in 1931.

Equivalently, a Gödel numbering $\varphi : \mathbb{N} \to P^{(1)}$ of the set $P^{(1)}$ of partial recursive functions (computable number functions) $f :\subseteq \mathbb{N} \to \mathbb{N}$ is defined uniquely up to equivalence in Type-1 recursion theory. This is due to the utm-theorem and smn-theorem.

In mathematical logic, a Gödel numbering is a function that assigns each symbol and well-formed formula to a unique natural number, used by K. Gödel for the proof of his incompleteness theorems in 1931.

Equivalently, a Gödel numbering $\varphi : \mathbb{N} \to P^{(1)}$ of the set $P^{(1)}$ of partial recursive functions (computable number functions) $f :\subseteq \mathbb{N} \to \mathbb{N}$ is defined uniquely up to equivalence in Type-1 recursion theory. This is due to the utm-theorem and smn-theorem.

In order to produce Type-2 generalizations of these theorems, we must first introduce general notations and representations, "naming systems".

In mathematical logic, a Gödel numbering is a function that assigns each symbol and well-formed formula to a unique natural number, used by K. Gödel for the proof of his incompleteness theorems in 1931.

Equivalently, a Gödel numbering $\varphi : \mathbb{N} \to P^{(1)}$ of the set $P^{(1)}$ of partial recursive functions (computable number functions) $f :\subseteq \mathbb{N} \to \mathbb{N}$ is defined uniquely up to equivalence in Type-1 recursion theory. This is due to the utm-theorem and smn-theorem.

In order to produce Type-2 generalizations of these theorems, we must first introduce general notations and representations, "naming systems".

Definition 1 (Notation and Representation)

- **1** A notation of a set M is a surjective function $v :\subseteq \Sigma^* \to M$.
- **2** A representation if a set M is a surjective function $\delta :\subseteq \Sigma^{\omega} \to M$.

Graham Campbell

Introduction to Computable Analysis

Effective Subsets

Standard Representations II

Definition 2 (Name)

$p \in Y$ is a γ -name of $x \in M$ iff $\gamma :\subseteq Y \to M$ is a naming system and $\gamma(p) = x$.

Graham Campbell Introduction to Computable Analysis

Definition 2 (Name)

 $p \in Y$ is a γ -name of $x \in M$ iff $\gamma :\subseteq Y \to M$ is a naming system and $\gamma(p) = x$.

Definition 3 (Orders and Equivalences)

For $\gamma :\subseteq Y \to M$, $\gamma' :\subseteq Y' \to M'$ with $Y, Y' \in \{\Sigma^*, \Sigma^\omega\}$, we:

Say f :⊆ Y → Y' reduces γ to γ' iff γ(y) = (γ'f)(y) for all y ∈ dom(γ). Write γ ≤ γ' (γ ≤_t γ') iff f is computable (continuous).

2 Write
$$\gamma \equiv \gamma' \ (\gamma \equiv_t \gamma')$$
 iff $\gamma \leq \gamma' \leq \gamma \ (\gamma \leq_t \gamma' \leq_t \gamma)$.

Definition 2 (Name)

 $p \in Y$ is a γ -name of $x \in M$ iff $\gamma :\subseteq Y \to M$ is a naming system and $\gamma(p) = x$.

Definition 3 (Orders and Equivalences)

For $\gamma :\subseteq Y \to M$, $\gamma' :\subseteq Y' \to M'$ with $Y, Y' \in \{\Sigma^*, \Sigma^\omega\}$, we:

Say f :⊆ Y → Y' reduces γ to γ' iff γ(y) = (γ'f)(y) for all y ∈ dom(γ). Write γ ≤ γ' (γ ≤_t γ') iff f is computable (continuous).

2 Write
$$\gamma \equiv \gamma' \ (\gamma \equiv_t \gamma')$$
 iff $\gamma \leq \gamma' \leq \gamma \ (\gamma \leq_t \gamma' \leq_t \gamma)$.

Clearly $\leq \leq_t$ are preorders and $\equiv \equiv_t$ are equivalences on the class of naming systems.

Graham Campbell

Introduction to Computable Analysis

utm/smn-Properties Revisited

In elementary computability theory, Turing Machines computing word functions $f :\subseteq \Sigma^* \to \Sigma^*$ are encoded canonically by words from Σ^* .

utm/smn-Properties Revisited

In elementary computability theory, Turing Machines computing word functions $f :\subseteq \Sigma^* \to \Sigma^*$ are encoded canonically by words from Σ^* .

If $\psi_w :\subseteq \Sigma^* \to \Sigma^*$ is the word function computed by the Turing Machine with code w, then the notation $w \to \psi_w$ of the computable word functions satisfy the utm/smn-properties.

utm/smn-Properties Revisited

In elementary computability theory, Turing Machines computing word functions $f :\subseteq \Sigma^* \to \Sigma^*$ are encoded canonically by words from Σ^* .

If $\psi_w :\subseteq \Sigma^* \to \Sigma^*$ is the word function computed by the Turing Machine with code w, then the notation $w \to \psi_w$ of the computable word functions satisfy the utm/smn-properties.

Definition 4 $(utm(\psi))$

The function $(w, x) \mapsto \psi_w(x)$ is computable.

utm/smn-Properties Revisited

In elementary computability theory, Turing Machines computing word functions $f :\subseteq \Sigma^* \to \Sigma^*$ are encoded canonically by words from Σ^* .

If $\psi_w :\subseteq \Sigma^* \to \Sigma^*$ is the word function computed by the Turing Machine with code w, then the notation $w \to \psi_w$ of the computable word functions satisfy the utm/smn-properties.

Definition 4 $(utm(\psi))$

The function $(w, x) \mapsto \psi_w(x)$ is computable.

Definition 5 $(\operatorname{smn}(\psi))$

For every computable function $f :\subseteq \Sigma^* \times \Sigma^* \to \Sigma^*$, there is a total computable function $r : \Sigma^* \to \Sigma^*$ with $r(x) \in \operatorname{dom}(\psi)$ for all $x \in \Sigma^*$ and $f(x, y) = \psi_{r(x)}(y)$ for all $x, y \in \Sigma^*$.

General utm/smn-Properties I

Let $a, b, c \in \{*, \omega\}$, G^{ab} be a set of functions, $g :\subseteq \Sigma^a \to \Sigma^b$, $\zeta :\subseteq \Sigma^c \to G^{ab}$ be a naming system of G^{ab} .

Graham Campbell Introduction to Computable Analysis

General utm/smn-Properties I

Let $a, b, c \in \{*, \omega\}$, G^{ab} be a set of functions, $g :\subseteq \Sigma^a \to \Sigma^b$, $\zeta :\subseteq \Sigma^c \to G^{ab}$ be a naming system of G^{ab} .

Definition 6 $(utm(\zeta))$

There is a computable (universal) function $u: \Sigma^c \times \Sigma^a \to \Sigma^b$ with $\zeta_x(y) = u(x, y)$ for all $x \in \text{dom}(\zeta)$ and $y \in \Sigma^a$.

General utm/smn-Properties I

Let $a, b, c \in \{*, \omega\}$, G^{ab} be a set of functions, $g :\subseteq \Sigma^a \to \Sigma^b$, $\zeta :\subseteq \Sigma^c \to G^{ab}$ be a naming system of G^{ab} .

Definition 6 $(utm(\zeta))$

There is a computable (universal) function $u: \Sigma^c \times \Sigma^a \to \Sigma^b$ with $\zeta_x(y) = u(x, y)$ for all $x \in \operatorname{dom}(\zeta)$ and $y \in \Sigma^a$.

Definition 7 (smn(ζ))

For every computable function $f :\subseteq \Sigma^c \times \Sigma^a \to \Sigma^b$, there is a total computable function $s : \Sigma^c \to \Sigma^c$ with $s(x) \in \text{dom}(\zeta)$ for all $x \in \Sigma^c$ and $f(x, y) = \zeta_{s(x)}(y)$ for all $x \in \Sigma c$ and $y \in \Sigma^a$.

Graham Campbell Introduction to Computable Analysis

General utm/smn-Properties II

Definition 8 (Notation ξ^{ab})

Consider a canonical encoding of Type-2 machines with one input tape by words $w \in \Sigma^*$ such that the set *TC* of words is recursive. For all $a, b \in \{*, \omega\}$, define:

 $P^{ab} := \{ f : \subseteq \Sigma^a \to \Sigma^b \mid f \text{ is computable} \}$

and a notation $\xi^{ab}: \Sigma^* \to P^{ab}$ of the set P^{ab} , where $\xi^{ab}(w)$ is undefined on all non-code words, otherwise equals the function $f \in P^{ab}$ computed by the Type-2 machine with code w.

General utm/smn-Properties II

Definition 8 (Notation ξ^{ab})

Consider a canonical encoding of Type-2 machines with one input tape by words $w \in \Sigma^*$ such that the set *TC* of words is recursive. For all $a, b \in \{*, \omega\}$, define:

 $P^{ab} := \{ f : \subseteq \Sigma^a \to \Sigma^b \mid f \text{ is computable} \}$

and a notation $\xi^{ab}: \Sigma^* \to P^{ab}$ of the set P^{ab} , where $\xi^{ab}(w)$ is undefined on all non-code words, otherwise equals the function $f \in P^{ab}$ computed by the Type-2 machine with code w.

Theorem 9

For all $a, b \in \{*, \omega\}$, we have $\operatorname{utm}(\xi^{ab})$ and $\operatorname{smn}(\xi^{ab})$.

Definition 10

- $\blacksquare F^{**} := \{f \mid f :\subseteq \Sigma^* \to \Sigma^*\};$
- **3** $F^{\omega*} := \{f \mid f : \subseteq \Sigma^{\omega} \to \Sigma^* \text{ continuous and } \operatorname{dom}(f) \text{ open}\};$

Definition 10

2
$$F^{*\omega} := \{f \mid f :\subseteq \Sigma^* \to \Sigma^\omega\};$$

Theorem 11

1
$$F^{\omega *} = \{h_* \mid h :\subseteq \Sigma^* \to \Sigma^* \text{ has prefix-free domain}\}$$

2 $F^{\omega \omega} = \{h_{\omega} \mid h :\subseteq \Sigma^* \to \Sigma^* \text{ is monotone}\}.$

Graham Campbell Introduction to Computable Analysis

Theorem 12

- **1** Every continuous $f :\subseteq \Sigma^{\omega} \to \Sigma^*$ has an extension in $F^{\omega*}$;
- **2** Every continuous $f :\subseteq \Sigma^{\omega} \to \Sigma^{\omega}$ has an extension in $F^{\omega\omega}$.

Theorem 12

- **1** Every continuous $f :\subseteq \Sigma^{\omega} \to \Sigma^*$ has an extension in $F^{\omega*}$;
- **2** Every continuous $f :\subseteq \Sigma^{\omega} \to \Sigma^{\omega}$ has an extension in $F^{\omega\omega}$.

Functions from F^{ab} are "essentially" closed under composition.

Theorem 13

If
$$g \in F^{ab}$$
, $f \in F^{bc}$ where $a, b, c \in \{*, \omega\}$, then:

If $b = \omega$ and c = *, then $f \circ g$ has an extension $d \in F^{a*}$ with $dom(d) \cap dom(g) = f \circ g$;

2 Otherwise,
$$f \circ g \in F^{ac}$$
.

Definition 14 (Standard Representation of F^{ab})

For all $a, b \in \{*, \omega\}$, define the standard representation $\eta^{ab} : \Sigma^{\omega} \to F^{ab}$ of F^{ab} by $\eta^{ab}(\langle x, p \rangle)(y) := \xi_x^{\omega b} \langle p, y \rangle$ for all $x \in \Sigma^*, p \in \Sigma^{\omega}, y \in \Sigma^a$, and $\eta^{ab}(q)(_{-}) := \bot$ if for no $x \in \Sigma^*, \iota(x) \sqsubseteq q$.

Definition 14 (Standard Representation of F^{ab})

For all $a, b \in \{*, \omega\}$, define the standard representation $\eta^{ab} : \Sigma^{\omega} \to F^{ab}$ of F^{ab} by $\eta^{ab}(\langle x, p \rangle)(y) := \xi_x^{\omega b} \langle p, y \rangle$ for all $x \in \Sigma^*, p \in \Sigma^{\omega}, y \in \Sigma^a$, and $\eta^{ab}(q)(_{-}) := \bot$ if for no $x \in \Sigma^*, \iota(x) \sqsubseteq q$.

Lemma 15

The representations η^{ab} are well-defined.

Definition 14 (Standard Representation of F^{ab})

For all $a, b \in \{*, \omega\}$, define the standard representation $\eta^{ab} : \Sigma^{\omega} \to F^{ab}$ of F^{ab} by $\eta^{ab}(\langle x, p \rangle)(y) := \xi_x^{\omega b} \langle p, y \rangle$ for all $x \in \Sigma^*, p \in \Sigma^{\omega}, y \in \Sigma^a$, and $\eta^{ab}(q)(_{-}) := \bot$ if for no $x \in \Sigma^*, \iota(x) \sqsubseteq q$.

Lemma 15

The representations η^{ab} are well-defined.

Computable functions have computable names.

Lemma 16

A function $f :\subseteq \Sigma^a \to \Sigma^b$ is computable iff $f = \eta_p^{ab}$ for some computable $p \in \Sigma^{\omega}$.

Graham Campbell

Introduction to Computable Analysis

Classes of Continuous Functions $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Effective Subsets 00000

Important Theorems

Theorem 17

For all $a, b \in \{*, \omega\}$, we have $\operatorname{utm}(\eta^{ab})$ and $\operatorname{smn}(\eta^{ab})$.

Graham Campbell Introduction to Computable Analysis Classes of Continuous Functions $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Important Theorems

Theorem 17

For all $a, b \in \{*, \omega\}$, we have $utm(\eta^{ab})$ and $smn(\eta^{ab})$.

Theorem 18

For notations β , γ , δ of G^{ab} with utm(δ) and smn(δ), we have:

1
$$(\beta \leq \gamma \wedge \operatorname{utm}(\gamma)) \Rightarrow \operatorname{utm}(\beta);$$

2
$$(\operatorname{smn}(\beta) \land \beta \leq \gamma) \Rightarrow \operatorname{smn}(\gamma);$$

$$\exists (\operatorname{utm}(\beta) \wedge \operatorname{smn}(\gamma)) \Rightarrow \beta \leq \gamma;$$

4 utm(
$$\beta$$
) $\Leftrightarrow \beta \leq \delta$;

5
$$\operatorname{smn}(\beta) \Leftrightarrow \delta \leq \beta;$$

$$(\operatorname{utm}(\gamma) \wedge \operatorname{smn}(\gamma)) \Leftrightarrow \gamma \equiv \delta.$$

Classes of Continuous Functions $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Effective Subsets

A Topological View

For a representation δ of F^{ab} , define:

Graham Campbell Introduction to Computable Analysis

A Topological View

For a representation δ of F^{ab} , define:

Definition 19 $(tutm(\delta))$

There is a $u \in F^{\omega b}$ such that $u\langle p, y \rangle = \delta_p(y)$ for all $p \in \operatorname{dom}(\delta)$ and $y \in \Sigma^a$.

A Topological View

For a representation δ of F^{ab} , define:

Definition 19 $(tutm(\delta))$

There is a $u \in F^{\omega b}$ such that $u\langle p, y \rangle = \delta_p(y)$ for all $p \in \operatorname{dom}(\delta)$ and $y \in \Sigma^a$.

Definition 20 $(tsmn(\delta))$

For every $f \in F^{\omega b}$, there is a continuous $s : \Sigma^{\omega} \to \Sigma^{\omega}$ with $s(p) \in \text{dom}$ and $f\langle p, y \rangle = \delta_{s(p)}(y)$ for all $p \in \Sigma^{\omega}$ and $y \in \Sigma^{a}$.

A Topological View

For a representation δ of F^{ab} , define:

Definition 19 $(tutm(\delta))$

There is a $u \in F^{\omega b}$ such that $u \langle p, y \rangle = \delta_p(y)$ for all $p \in \operatorname{dom}(\delta)$ and $y \in \Sigma^a$.

Definition 20 $(tsmn(\delta))$

For every $f \in F^{\omega b}$, there is a continuous $s : \Sigma^{\omega} \to \Sigma^{\omega}$ with $s(p) \in \text{dom}$ and $f\langle p, y \rangle = \delta_{s(p)}(y)$ for all $p \in \Sigma^{\omega}$ and $y \in \Sigma^{a}$.

Theorem 21

For all $a, b \in \{*, \omega\}$, we have $tutm(\eta^{ab})$ and $tsmn(\eta^{ab})$.

Graham Campbell

Introduction to Computable Analysis

Decidable Sets I

Definition 22 (Type-2 Decidability)

Consider $X \subseteq Z \subseteq Y := Y_1 \times \cdots \times Y_k$ where $k \ge 1$ and $Y_1, \ldots, Y_k \in \{\Sigma^*, \Sigma^\omega\}$. Then:

- 1 X is called r.e. open in Z iff $X = dom(f) \cap Z$ for some computable function $f :\subseteq Y \to \Sigma^*$;
- **2** X is called decidable in Z iff both X and $Z \setminus X$ are r.e. open in Z;
- **3** X is called open in Z iff $X = U \cap Z$ for some open set $U \subseteq Y$;
- **4** X is called closed in Z iff $Z \setminus X$ is open in Z.

Decidable Sets I

Definition 22 (Type-2 Decidability)

Consider $X \subseteq Z \subseteq Y := Y_1 \times \cdots \times Y_k$ where $k \ge 1$ and $Y_1, \ldots, Y_k \in \{\Sigma^*, \Sigma^\omega\}$. Then:

- 1 X is called r.e. open in Z iff $X = dom(f) \cap Z$ for some computable function $f :\subseteq Y \to \Sigma^*$;
- **2** X is called decidable in Z iff both X and $Z \setminus X$ are r.e. open in Z;
- 3 X is called open in Z iff $X = U \cap Z$ for some open set $U \subseteq Y$;
- **4** X is called closed in Z iff $Z \setminus X$ is open in Z.

Lemma 23

X r.e. open (decidable) in Z implies X is open (clopen) in Z.

Graham Campbell

Introduction to Computable Analysis

Decidable Sets II

Theorem 24

Let $X \subseteq Z \subseteq Y$ be as before. Then X is clopen (decidable) in Z iff there is a continuous (computable) function $f : Y \to \Sigma^*$ with f(z) = 1 if $z \in X$ and f(z) = 0 if $z \in Z \setminus X$.

Decidable Sets II

Theorem 24

Let $X \subseteq Z \subseteq Y$ be as before. Then X is clopen (decidable) in Z iff there is a continuous (computable) function $f : Y \to \Sigma^*$ with f(z) = 1 if $z \in X$ and f(z) = 0 if $z \in Z \setminus X$.

Recall that each decidable set $X \subseteq \Sigma^{\omega}$ has the form $X = A\Sigma^{\omega}$ for some finite $A \subseteq \Sigma^*$.

Decidable Sets II

Theorem 24

Let $X \subseteq Z \subseteq Y$ be as before. Then X is clopen (decidable) in Z iff there is a continuous (computable) function $f : Y \to \Sigma^*$ with f(z) = 1 if $z \in X$ and f(z) = 0 if $z \in Z \setminus X$.

Recall that each decidable set $X \subseteq \Sigma^{\omega}$ has the form $X = A\Sigma^{\omega}$ for some finite $A \subseteq \Sigma^*$.

Example 25

Clearly, Z is decidable in X.

Graham Campbell Introduction to Computable Analysis

Decidable Sets II

Theorem 24

Let $X \subseteq Z \subseteq Y$ be as before. Then X is clopen (decidable) in Z iff there is a continuous (computable) function $f : Y \to \Sigma^*$ with f(z) = 1 if $z \in X$ and f(z) = 0 if $z \in Z \setminus X$.

Recall that each decidable set $X \subseteq \Sigma^{\omega}$ has the form $X = A\Sigma^{\omega}$ for some finite $A \subseteq \Sigma^*$.

Example 25

Clearly, Z is decidable in X.

Example 26

If X is r.e. open (decidable), then X is r.e. open (decidable) in Z whenever $X \subseteq Z$.

Graham Campbell

Introduction to Computable Analysis

Decidable Sets II

Example 27

The set $X = \{p \in \Sigma^{\omega} \mid p \neq o^{\omega}\}$ is r.e. open but its complement is not, since it does not contain a set $w\Sigma^{\omega}$. Thus, X is not closed, so not clopen, so not decidable.

Decidable Sets II

Example 27

The set $X = \{p \in \Sigma^{\omega} \mid p \neq o^{\omega}\}$ is r.e. open but its complement is not, since it does not contain a set $w\Sigma^{\omega}$. Thus, X is not closed, so not clopen, so not decidable.

Example 28

 $X \subseteq Y_1 \times \cdots \times Y_k$ is r.e. open (decidable) iff $\langle X \rangle$ is r.e. open (decidable) in $\langle Y_1 \times \cdots \times Y_k \rangle$.

Decidable Sets II

Example 27

The set $X = \{p \in \Sigma^{\omega} \mid p \neq o^{\omega}\}$ is r.e. open but its complement is not, since it does not contain a set $w\Sigma^{\omega}$. Thus, X is not closed, so not clopen, so not decidable.

Example 28

 $X \subseteq Y_1 \times \cdots \times Y_k$ is r.e. open (decidable) iff $\langle X \rangle$ is r.e. open (decidable) in $\langle Y_1 \times \cdots \times Y_k \rangle$.

Example 29

Union and intersection of r.e. open sets are r.e. open. For decidable sets, complement is decidable too.

Decidable Sets III

Example 30

If $f :\subseteq Y_1 \times \cdots \times Y_k \to Y_0$ is computable and $U \subseteq W \subseteq Y_0$ is r.e. open (decidable) in W, then $f^{-1}[U]$ is r.e. open (decidable) in $f^{-1}[W]$.

Decidable Sets III

Example 30

If $f :\subseteq Y_1 \times \cdots \times Y_k \to Y_0$ is computable and $U \subseteq W \subseteq Y_0$ is r.e. open (decidable) in W, then $f^{-1}[U]$ is r.e. open (decidable) in $f^{-1}[W]$.

Theorem 31

For $X \subseteq Y := Y_1 \times \cdots Y_k$ $(Y_1, \ldots, Y_k \in \{\Sigma^*, \Sigma^{\omega}\})$, the following properties are equivalent:

- 1 X is r.e. open;
- 2 $X = A \circ Y$ for some r.e. $A \subseteq (\Sigma^*)^k$;
- **3** X is open and $\{y \in (\Sigma^*)^k \mid y \circ Y \subseteq X\}$ is r.e. open.

Effective Subsets

Recursive Open Sets

Definition 32

For any open $X \subseteq Y := Y_1 \times \cdots Y_k$, define:

- 1 X is r.e. iff $\{y \in (\Sigma^*)^k \mid y \circ Y \subseteq X\}$ is r.e.;
- 2 X is co-r.e. iff $\{y \in (\Sigma^*)^k \mid y \circ Y \not\subseteq X\}$ is r.e.;
- **3** X is recursive iff $\{y \in (\Sigma^*)^k \mid y \circ Y \subseteq X\}$ is decidable.

Recursive Open Sets

Definition 32

For any open $X \subseteq Y := Y_1 \times \cdots Y_k$, define:

- 1 X is r.e. iff $\{y \in (\Sigma^*)^k \mid y \circ Y \subseteq X\}$ is r.e.;
- 2 X is co-r.e. iff $\{y \in (\Sigma^*)^k \mid y \circ Y \not\subseteq X\}$ is r.e.;
- **3** X is recursive iff $\{y \in (\Sigma^*)^k \mid y \circ Y \subseteq X\}$ is decidable.

Thus, an open set $X \subseteq Y$ is recursive iff it is both r.e. and co-r.e.. Notice that if $Y = (\Sigma^*)^k$, then X is (co-)r.e. (recursive) iff it is in the usual sense.

Recursive Open Sets

Definition 32

For any open $X \subseteq Y := Y_1 \times \cdots Y_k$, define:

- **1** X is r.e. iff $\{y \in (\Sigma^*)^k \mid y \circ Y \subseteq X\}$ is r.e.;
- 2 X is co-r.e. iff $\{y \in (\Sigma^*)^k \mid y \circ Y \not\subseteq X\}$ is r.e.;
- **3** X is recursive iff $\{y \in (\Sigma^*)^k \mid y \circ Y \subseteq X\}$ is decidable.

Thus, an open set $X \subseteq Y$ is recursive iff it is both r.e. and co-r.e.. Notice that if $Y = (\Sigma^*)^k$, then X is (co-)r.e. (recursive) iff it is in the usual sense.

Recall that r.e. open subsets of Y are closed under both union and intersection. The recursive open sets are only closed under union. Note that while decidable implies recursive, the reverse is not necessarily true.