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Standard Representations Classes of Continuous Functions Effective Subsets

Standard Representations I

In mathematical logic, a Gödel numbering is a function that assigns each
symbol and well-formed formula to a unique natural number, used by K.
Gödel for the proof of his incompleteness theorems in 1931.

Equivalently, a Gödel numbering ϕ : N→ P(1) of the set P(1) of partial
recursive functions (computable number functions) f :⊆ N→ N is
defined uniquely up to equivalence in Type-1 recursion theory. This is due
to the utm-theorem and smn-theorem.

In order to produce Type-2 generalizations of these theorems, we must
first introduce general notations and representations, “naming systems”.

Definition 1 (Notation and Representation)

1 A notation of a set M is a surjective function υ :⊆ Σ∗ → M.

2 A representation if a set M is a surjective function δ :⊆ Σω → M.

Graham Campbell

Introduction to Computable Analysis



Standard Representations Classes of Continuous Functions Effective Subsets

Standard Representations I
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In mathematical logic, a Gödel numbering is a function that assigns each
symbol and well-formed formula to a unique natural number, used by K.
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Standard Representations II

Definition 2 (Name)

p ∈ Y is a γ-name of x ∈ M iff γ :⊆ Y → M is a naming system and
γ(p) = x .

Definition 3 (Orders and Equivalences)

For γ :⊆ Y → M, γ′ :⊆ Y ′ → M ′ with Y ,Y ′ ∈ {Σ∗,Σω}, we:

1 Say f :⊆ Y → Y ′ reduces γ to γ′ iff γ(y) = (γ′f )(y) for all
y ∈ dom(γ). Write γ ≤ γ′ (γ ≤t γ

′) iff f is computable
(continuous).

2 Write γ ≡ γ′ (γ ≡t γ
′) iff γ ≤ γ′ ≤ γ (γ ≤t γ

′ ≤t γ).

Clearly ≤, ≤t are preorders and ≡, ≡t are equivalences on the class of
naming systems.
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utm/smn-Properties Revisited

In elementary computability theory, Turing Machines computing word
functions f :⊆ Σ∗ → Σ∗ are encoded canonically by words from Σ∗.

If ψw :⊆ Σ∗ → Σ∗ is the word function computed by the Turing Machine
with code w , then the notation w → ψw of the computable word
functions satisfy the utm/smn-properties.

Definition 4 (utm(ψ))

The function (w , x) 7→ ψw (x) is computable.

Definition 5 (smn(ψ))

For every computable function f :⊆ Σ∗ × Σ∗ → Σ∗, there is a total
computable function r : Σ∗ → Σ∗ with r(x) ∈ dom(ψ) for all x ∈ Σ∗ and
f (x , y) = ψr(x)(y) for all x , y ∈ Σ∗.
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General utm/smn-Properties I

Let a, b, c ∈ {∗, ω}, G ab be a set of functions, g :⊆ Σa → Σb,
ζ :⊆ Σc → G ab be a naming system of G ab.

Definition 6 (utm(ζ))

There is a computable (universal) function u : Σc × Σa → Σb with
ζx(y) = u(x , y) for all x ∈ dom(ζ) and y ∈ Σa.

Definition 7 (smn(ζ))

For every computable function f :⊆ Σc × Σa → Σb, there is a total
computable function s : Σc → Σc with s(x) ∈ dom(ζ) for all x ∈ Σc and
f (x , y) = ζs(x)(y) for all x ∈ Σc and y ∈ Σa.
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General utm/smn-Properties II

Definition 8 (Notation ξab)

Consider a canonical encoding of Type-2 machines with one input tape
by words w ∈ Σ∗ such that the set TC of words is recursive. For all
a, b ∈ {∗, ω}, define:

Pab := {f :⊆ Σa → Σb | f is computable}

and a notation ξab : Σ∗ → Pab of the set Pab, where ξab(w) is undefined
on all non-code words, otherwise equals the function f ∈ Pab computed
by the Type-2 machine with code w .

Theorem 9

For all a, b ∈ {∗, ω}, we have utm(ξab) and smn(ξab).
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Classes of Continuous Functions I

Definition 10

1 F ∗∗ := {f | f :⊆ Σ∗ → Σ∗};
2 F ∗ω := {f | f :⊆ Σ∗ → Σω};
3 Fω∗ := {f | f :⊆ Σω → Σ∗ continuous and dom(f ) open};
4 Fωω := {f | f :⊆ Σω → Σω continuous and dom(f ) a Gδ set}.

Theorem 11

1 Fω∗ = {h∗ | h :⊆ Σ∗ → Σ∗ has prefix-free domain};
2 Fωω = {hω | h :⊆ Σ∗ → Σ∗ is monotone}.
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Classes of Continuous Functions II

Theorem 12

1 Every continuous f :⊆ Σω → Σ∗ has an extension in Fω∗;

2 Every continuous f :⊆ Σω → Σω has an extension in Fωω.

Functions from F ab are “essentially” closed under composition.

Theorem 13

If g ∈ F ab, f ∈ F bc where a, b, c ∈ {∗, ω}, then:

1 If b = ω and c = ∗, then f ◦ g has an extension d ∈ F a∗ with
dom(d) ∩ dom(g) = f ◦ g;

2 Otherwise, f ◦ g ∈ F ac .
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Classes of Continuous Functions III

Definition 14 (Standard Representation of F ab)

For all a, b ∈ {∗, ω}, define the standard representation ηab : Σω → F ab

of F ab by ηab(〈x , p〉)(y) := ξωbx 〈p, y〉 for all x ∈ Σ∗, p ∈ Σω, y ∈ Σa, and
ηab(q)( ) := ⊥ if for no x ∈ Σ∗, ι(x) v q.

Lemma 15

The representations ηab are well-defined.

Computable functions have computable names.

Lemma 16

A function f :⊆ Σa → Σb is computable iff f = ηabp for some computable
p ∈ Σω.
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Important Theorems

Theorem 17

For all a, b ∈ {∗, ω}, we have utm(ηab) and smn(ηab).

Theorem 18

For notations β, γ, δ of G ab with utm(δ) and smn(δ), we have:

1 (β ≤ γ ∧ utm(γ))⇒ utm(β);

2 (smn(β) ∧ β ≤ γ)⇒ smn(γ);

3 (utm(β) ∧ smn(γ))⇒ β ≤ γ;

4 utm(β)⇔ β ≤ δ;

5 smn(β)⇔ δ ≤ β;

6 (utm(γ) ∧ smn(γ))⇔ γ ≡ δ.
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A Topological View

For a representation δ of F ab, define:

Definition 19 (tutm(δ))

There is a u ∈ Fωb such that u〈p, y〉 = δp(y) for all p ∈ dom(δ) and
y ∈ Σa.

Definition 20 (tsmn(δ))

For every f ∈ Fωb, there is a continuous s : Σω → Σω with s(p) ∈ dom
and f 〈p, y〉 = δs(p)(y) for all p ∈ Σω and y ∈ Σa.

Theorem 21

For all a, b ∈ {∗, ω}, we have tutm(ηab) and tsmn(ηab).

Graham Campbell
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Decidable Sets I

Definition 22 (Type-2 Decidability)

Consider X ⊆ Z ⊆ Y := Y1 × · · · × Yk where k ≥ 1 and
Y1, . . . ,Yk ∈ {Σ∗,Σω}. Then:

1 X is called r.e. open in Z iff X = dom(f ) ∩ Z for some computable
function f :⊆ Y → Σ?;

2 X is called decidable in Z iff both X and Z \ X are r.e. open in Z ;

3 X is called open in Z iff X = U ∩ Z for some open set U ⊆ Y ;

4 X is called closed in Z iff Z \ X is open in Z .

Lemma 23

X r.e. open (decidable) in Z implies X is open (clopen) in Z .
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Decidable Sets II

Theorem 24

Let X ⊆ Z ⊆ Y be as before. Then X is clopen (decidable) in Z iff there
is a continuous (computable) function f : Y → Σ∗ with f (z) = 1 if
z ∈ X and f (z) = 0 if z ∈ Z \ X .

Recall that each decidable set X ⊆ Σω has the form X = AΣω for some
finite A ⊆ Σ∗.

Example 25

Clearly, Z is decidable in X .

Example 26

If X is r.e. open (decidable), then X is r.e. open (decidable) in Z
whenever X ⊆ Z .

Graham Campbell
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Decidable Sets II

Example 27

The set X = {p ∈ Σω | p 6= oω} is r.e. open but its complement is not,
since it does not contain a set wΣω. Thus, X is not closed, so not
clopen, so not decidable.

Example 28

X ⊆ Y1 × · · · × Yk is r.e. open (decidable) iff 〈X 〉 is r.e. open
(decidable) in 〈Y1 × · · · × Yk〉.

Example 29

Union and intersection of r.e. open sets are r.e. open. For decidable sets,
complement is decidable too.
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Decidable Sets II

Example 27

The set X = {p ∈ Σω | p 6= oω} is r.e. open but its complement is not,
since it does not contain a set wΣω. Thus, X is not closed, so not
clopen, so not decidable.
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Decidable Sets III

Example 30

If f :⊆ Y1 × · · · × Yk → Y0 is computable and U ⊆W ⊆ Y0 is r.e. open
(decidable) in W , then f −1[U] is r.e. open (decidable) in f −1[W ].

Theorem 31

For X ⊆ Y := Y1 × · · ·Yk (Y1, . . .Yk ∈ {Σ∗,Σω}), the following
properties are equivalent:

1 X is r.e. open;

2 X = A ◦ Y for some r.e. A ⊆ (Σ∗)k ;

3 X is open and {y ∈ (Σ∗)k | y ◦ Y ⊆ X} is r.e. open.
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Recursive Open Sets

Definition 32

For any open X ⊆ Y := Y1 × · · ·Yk , define:

1 X is r.e. iff {y ∈ (Σ∗)k | y ◦ Y ⊆ X} is r.e.;

2 X is co-r.e. iff {y ∈ (Σ∗)k | y ◦ Y 6⊆ X} is r.e.;

3 X is recursive iff {y ∈ (Σ∗)k | y ◦ Y ⊆ X} is decidable.

Thus, an open set X ⊆ Y is recursive iff it is both r.e. and co-r.e..
Notice that if Y = (Σ∗)k , then X is (co-)r.e. (recursive) iff it is in the
usual sense.

Recall that r.e. open subsets of Y are closed under both union and
intersection. The recursive open sets are only closed under union. Note
that while decidable implies recursive, the reverse is not necessarily true.
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