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There are various equivalent formulations of the shortest path problem,
such as finding a shortest path between two vertices or between any vertex
and some fixed destination. It is equivalent to solve the so called single-source
shortest path problem: Given some fixed source vertex, find the weight of the
shortest path from this to each of the other vertices.

When weights are induced by embedding a connected graph in Rn, for
sufficiently large n, clearly the shortest path function is a metric, however it
is often useful to consider weights that are not metrics or even quasimetrics
(symmetry not required). The Bellman-Ford algorithm, first proposed by
Shimbe in 1955 [1], solves the single-source shortest path problem in the most
general case, in O(|E| · |V |) time, and has the lowest worst-case complexity of
any algorithm known to solve this problem.

The algorithm works by relaxing edges, progressively decreasing an estim-
ate of the shortest path from each vertex from the source. In this Chapter, we
will show that the Bellman-Ford algorithm can be adapted so that it can be
implemented in a rule-based graph language. Moreover, by using root nodes
in GP2 [2], we can achieve the same worst-case time complexity, given a graph
of bounded degree.

Problem Specification

We start by specifying the single destination shortest path problem in a way
that makes sense for GP2. We shall represent the source node by colouring
it red, and weight represented by integer labels on edges. We now define an
input graph, and a shortest path:

Definition 1 (Input graph). An input graph has no root nodes and is un-
marked apart from exactly one node coloured red (the source node). Nodes
may be arbitrarily labelled, but all edges must be integer labelled (with weights).
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Definition 2 (Shortest path). Given an input graph and a vertex v, the weight
of the shortest path between the source and v, if it exists, is the smallest weight
of any path between the source and v, where the weight of a path is defined to
be the sum of the weights of its edges. If no between the source and v exists,
then we define the weight of the shortest path to be ∞.

Proposition 3 (Shortest path characterisation). A shortest path weight between
the source and v exists iff there does not exist a path between the source and
v containing a cycle of negative weight.

Clearly, we can satisfy this condition by requiring the graph to be acyclic
or have only positive weights, however this may to too restrictive in prac-
tice, or simply inconvenient. The Bellman-Ford algorithm is correct on all
weighted graphs, and is able to detect when a shortest path doesn’t exist due
to (countably) infinitely many paths between the source and v with infinitely
descending weight. Note that by the definition of shortest path weight, even
if there is no path, there is still a shortest path weight (defined to be infinite).

Definition 4 (Shortest paths specification). The shortest paths specification
is as follows.

• Input: An input graph.

• Output: Fail iff there does not exist a shortest path weight between
the source and any other node. Otherwise, produce the input graph
augmented with a green loop on each vertex labelled with the weight of
its shortest path if it is finite, otherwise there is no additional looped
edge.

GP2 Implementation

The key to being able to being able to implement this specification efficiently
in GP2 is using DFS. The program (Figure 1) starts by visiting every node
using a DFS, pushing each new node on to a stack as it goes. After the DFS,
we initialize every reachable node with an infinite distance, and the source with
distance zero. As we do this, we also take a copy of the stack. The reason
for having two stacks of nodes is that we can now perform a doubly-nested
iteration of the vertices, allowing us to execute the Bellman-Ford algorithm.
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Main = init; DFS!; Setup; Relax; Check
DFS = forward!; try back else break
Setup = setup_0; setup_1; setup_2!; setup_3
Relax = (try outer_next then RelaxInner else break)!; outer_return_0!;
outer_return_1
RelaxInner = (RelaxEdge; try inner_next else break)!; inner_return!
RelaxEdge = {relax_outgoing_0, relax_outgoing_1}!; unmark_outgoing!
Check = (CheckEdge; try inner_next else break)!; CheckEdge;
inner_return_0!; inner_return_1
CheckEdge = if {relax_loop, relax_outgoing_0, relax_outgoing_1} then fail

Figure 1: The GP2 program bellman-ford

The correctness of our implementation follows from the correctness of DFS,
adding every node reachable from the source to a stack, and then the correct-
ness of the original Bellman-Ford algorithm, as given in Theorem 24.4 of [3].
For our purposes, a node stack is a non-empty linked list with a single outgoing
dashed edge leaving every node in the list, connecting to some node not in the
linked list. We call the first node in the list the head.

Proposition 5 (Correctness of Initialisation). The program init; DFS!;
Setup is correct with respect to the following specification.

• Input: An input graph.

• Output: The input graph augmented with a blue node stack and a green
node stack, such that:

1. For both stacks, their head’s outgoing dashed edge must connect
to the red source node. Every node reachable from the red source
in the input graph must be connected to both node stacks by a
dashed edge, and only those nodes. Moreover, the head of both
stacks must be a root node, and no other nodes may be roots.

2. The red source node must have, added, a single green looped edge
labelled with 0.

3. Every node reachable from the red source node must now be un-
marked, and must have, added, a single green unlabelled looped
green edge.

4. No extra nodes and edges can exist in the output, other than those
just described. None of the labels in the input can be modified.

Proposition 6 (Correctness of Relax and Check). The program Relax;
Check is correct with respect to the following specification.

• Input: A graph satisfying the output of Proposition 5 given a valid input.

• Output: Ignoring the graph stacks and green loops in the input, the
output must satisfy the shortest paths specification (Definition 4).
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Theorem 7 (Correctness of bellman-ford). The program bellman-ford
fulfills the shortest paths specification.

Proof. By Propositions 5 and 6, we have the result, since the bellman-ford
program is the sequential composition of the two sub-programs shown to be
correct.

Proposition 8 (Complexity of Initialisation). The program init; DFS!;
Setup terminates in O(|V |) time.

Proposition 9 (Complexity of Relax). The program Relax terminates in
O(|V |) time.

Proposition 10 (Complexity of Check). The program Check terminates in
O(|V |2) time.

For graphs of bounded degree, |V | and |E| only differ by a constant, thus
our program has exactly the same time complexity as the standard implement-
ation.

Theorem 11 (Complexity of bellman-ford). Given an input graph of
bounded degree, bellman-ford will terminate in quadratic time with respect
to the number of nodes in the input graph.

Proof. By Propositions 8, 9, and 10, we have the result, since the bellman-ford
program is the sequential composition of the three sub-programs, which have
at most quadratic time complexity.
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