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1 Graphs and Morphisms1

1.1 Unlabelled Graphs

Definition 1.1. We can formally define a concrete graph as:

G = (V,E, s : E → V, t : E → V )

where V is a finite set of vertices, E is a finite set of edges. We call s : E → V
the source function, and t : E → V the target function.

Definition 1.2. Given two concrete graphs G and H, a graph morphism
g : G→ H is a pair of mappings:

g = (gV : VG → VH , gE : EG → EH)

such that sources and targets are preserved. That is, these squares commute:

EG VG EG VG

EH VH EH VH

sG

gE gV

tG

gE gV

sH tH

Definition 1.3. A graph morphism g : G → H is injective/surjective iff
both gV and gE are injective/surjective as functions. We say g is bijective
iff it is both injective and surjective.

Definition 1.4. We say that graphs G,H are isomorphic iff there exists a
bijective graph morphism g : G → H, and we write G ∼= H. This naturally
gives rise to equivalence classes [G], called abstract graphs.

1The definitions and results are derived from [1].
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1.2 Labelled Graphs

Definition 1.5. A label alphabet L = (LV ,LE) consists of a set LV of node
labels, and LE a set of edge labels.

Definition 1.6. A concrete labelled graph over a label alphabet L is a
concrete graph equipped with two label maps l : V → LV , m : E → LE:

G(L) = (V,E, s, t, l,m)

Diagrammatically, we have:

LE E V LVm

s

t
l

Remark 1.1. By this definition, we do not work with the free monoid on
the alphabet, as in string rewriting systems. Nodes and edges are labelled
exactly with the elements from the respective alphabets themselves. We do
not require alphabets to be finite, since images of label maps must be finite.

Definition 1.7. Given a common alphabet L, a labelled graph morphism
g : G(L) → H(L) is a graph morphism on the underlying concrete graphs,
with the extra constraint that labels must be preserved. The following dia-
gram must commute (for sG, sH and tG, tH separately, as in Definition 1.2):

EG VG

LE LV

EH VH

sG
tG

gE

mG

gV

lG

sH
tH

mH

lH

Definition 1.8. Given a common alphabet L, a labelled graph morphism
g : G(L)→ H(L) is injective/surjective iff the underlying graph morphism
is injective/surjective. We define isomorphism classes in the same manner.

Definition 1.9. Given a common alphabet L, we say H(L) is a subgraph of
G(L) iff there exists an inclusion morphism H(L) ↪→ G(L). This happens
iff VH ⊆ VG, EH ⊆ EG, sH = sG

∣∣
EH

, tH = tG
∣∣
EH

, lH = lG
∣∣
VH

, mH = mG

∣∣
EH

.

Remark 1.2. The empty graph ∅ is trivially a subgraph of every graph.
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2 Graph Rewriting

2.1 Rules and Derivations

We shall assume that all graphs are concrete and labelled from now on,
writing simply G for a labelled concrete graph over some label alphabet.

Definition 2.1. A rule r = 〈L ← K → R〉 over L consists of graphs L, K
and R over L, and inclusions K ↪→ L and K ↪→ R.

Remark 2.1. We define the inverse rule as r−1 = 〈R← K → L〉.

Definition 2.2. To apply a rule r = 〈L← K → R〉 to some graph G, we:

1. Find an injective graph morphism g : L ↪→ G;

2. Check that no edge in G \ (Lg) is incident to a node in (L \K)g;

3. Delete (L \K)g, giving an intermediate graph D;

4. Add R \K to D, giving the result graph H.

If the dangling condition fails, then the rule is not applicable using the
match g. We can exhaustively check all matches to determine applicability.

Definition 2.3. We write G ⇒r,g H for a successful application of r to G
using match g, obtaining result graph H. We call this a direct derivation.

L K R

G D H

g d h

We call injective morphism h the comatch. Every derivation G⇒r,g H may
be reversed, using the comatch, giving H ⇒r−1,h G.

Remark 2.2. It turns out that gluings and deletions are pushouts in
the category of labelled graphs. Moreover, direct derivations are double
pushouts, and H is unique up to isomorphism.

Definition 2.4. For a finite set of rules R, we write G ⇒R H when H is
directly derived from G using any of the rules from R.

Definition 2.5. We write G ⇒+
R H when H is derived from G in one or

more direct derivations, and G⇒∗R H iff G ∼= H or G⇒+
R H.
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2.2 Transformation Systems

Definition 2.6. A graph transformation system (L,R), consists of a
label alphabet L = (LV ,LE), and a finite set R of rules over L.

Definition 2.7. Given a label alphabet L = (LV ,LE), P = (PV ,PE) is a
subalphabet of L iff PV ⊆ LV and PE ⊆ LE.

Definition 2.8. Given a graph transformation system (L,R), a subalphabet
of non-terminals N , and a start graph S over L, then a graph grammar
is the system G = (L,N ,R, S).

Definition 2.9. Given a graph grammar G as defined above, we say that a
graph G is terminally labelled iff V l ∩ NV = ∅ and Em ∩ NE = ∅. Thus,
we can define the graph language generated by G:

L(G) = {G | S ⇒∗R G,G terminally labelled}

Remark 2.3. Graph languages need not be finite. In fact, graph grammars
are as powerful as unrestricted string grammars. As such, many questions
like if the language is empty are undecidable in general.

2.3 Confluence and Termination

Let G = (L,R) be a graph transformation system.

Definition 2.10. G is strongly confluent iff for all graphs G,H1, H2,
H1 ⇐R G ⇒R H2 implies that either H1

∼= H2, or there is a graph M
such that H1 ⇒R M ⇐R H2.

Definition 2.11. G is confluent iff for all G,H1, H2, H1 ⇐∗R G ⇒∗R H2

implies that there is a graph M such that H1 ⇒∗R M ⇐∗R H2.

Definition 2.12. G is locally confluent iff for all G,H1, H2, H1 ⇐R G⇒R
H2 implies that there is a graph M such that H1 ⇒∗R M ⇐∗R H2.

Definition 2.13. G is terminating iff there is no infinite derivation se-
quence:

G0 ⇒R G1 ⇒R G2 ⇒R G3 ⇒R · · ·

Remark 2.4. Determining confluence and termination of graph rewriting
systems is undecidable in general. The same is true of term rewriting systems.
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